Loading [MathJax]/jax/output/CommonHTML/jax.js

EXAMPLE 3Finding the Average Value of a Function

Find the average value ˉy of the function f(x)=cos4x over the closed interval [0,π].

The average value of a function is discussed in Section 5.4, pp. 373-374.

Solution The average value ˉy of a function f over [a,b] is ˉy=1babaf(x)dx.

For f(x)=cos4x on [0,π], we have

Now

To find π0cos2(2x)dx, we use the identity cos2θ=1+cos(2θ)2 again to write cos2(2x)=1+cos(4x)2. Then π0cos2(2x)dx=π01+cos(4x)2dx=12[π0dx+π0cos(4x)dx]=12[π+4π0cosudu4]u=4xdu=4dx

So, from (1), ˉy=14π[π+0+π2]=38