Find the average value ˉy of the function f(x)=cos4x over the closed interval [0,π].
The average value of a function is discussed in Section 5.4, pp. 373-374.
Solution The average value ˉy of a function f over [a,b] is ˉy=1b−a∫baf(x)dx.
For f(x)=cos4x on [0,π], we have
Now
To find ∫π0cos2(2x)dx, we use the identity cos2θ=1+cos(2θ)2 again to write cos2(2x)=1+cos(4x)2. Then ∫π0cos2(2x)dx=∫π01+cos(4x)2dx=12[∫π0dx+∫π0cos(4x)dx]=12[π+∫4π0cosudu4]u=4x; du=4dx
So, from (1), ˉy=14π[π+0+π2]=38