Find ∫sin5x√cosxdx=∫sin5xcos1/2xdx.
Solution The exponent of sinx is 5, a positive, odd integer. We factor sinx from sin5x and write ∫sin5xcos1/2xdx=∫sin4xcos1/2xsinxdx=∫(sin2x)2cos1/2xsinxdx=∫(1−cos2x)2cos1/2xsinxdx
Now we use the substitution u=cosx. ∫sin5xcos1/2xdx=∫(1−cos2x)2cos1/2xsinxdx=↑u=cosxdu=−sinx dx∫(1−u2)2u1/2(−du)=−∫(u1/2−2u5/2+u9/2)du=−23u3/2+47u7/2−211u11/2+C=u3/2[−23+47u2−211u4]+C=↑u=cosx(cosx)3/2[−23+47cos2x−211cos4x]+C