Loading [MathJax]/jax/output/CommonHTML/jax.js

EXAMPLE 4Finding the Integral sin5xcosxdx

Find sin5xcosxdx=sin5xcos1/2xdx.

Solution The exponent of sinx is 5, a positive, odd integer. We factor sinx from sin5x and write sin5xcos1/2xdx=sin4xcos1/2xsinxdx=(sin2x)2cos1/2xsinxdx=(1cos2x)2cos1/2xsinxdx

Now we use the substitution u=cosx. sin5xcos1/2xdx=(1cos2x)2cos1/2xsinxdx=u=cosxdu=sinx dx(1u2)2u1/2(du)=(u1/22u5/2+u9/2)du=23u3/2+47u7/2211u11/2+C=u3/2[23+47u2211u4]+C=u=cosx(cosx)3/2[23+47cos2x211cos4x]+C