Find ∫tan3xsec4xdx.
Solution Here, tanx is raised to the odd power 3. We factor tanx from tan3x and use the identity tan2x=sec2x−1. ∫tan3xsec4xdx=∫tan2xtanxsec4xdxFactor tan x from tan3x.=∫(sec2x−1)tanxsec4xdxtan2x=sec2x−1=∫(sec2x−1)sec3xsecxtanxdxFactor sec x from sec4x.=∫(u2−1)u3duSubstitute u=secx;du=secx tanxdx.=∫(u5−u3)du=u66−u44+C=↑u=secxsec6x6−sec4x4+C