Find ∫tan2xsec4xdx.
Solution Here, secx is raised to a positive even power. We factor sec2x from sec4x and use the identity sec2x=1+tan2x. Then ∫tan2xsec4xdx=∫tan2xsec2x⋅sec2xdxFactor sec2x from sec4x.=∫tan2x(1+tan2x)sec2xdxsec2x=1+tan2x=∫u2(1+u2)duSubstitute u=tanx;du=sec2xdx.=∫(u2+u4)du=u33+u55+C=↑u=tanxtan3x3+tan5x5+C