Loading [MathJax]/jax/output/CommonHTML/jax.js

EXAMPLE 7Finding the Integral tan2xsecxdx.

Find tan2xsecxdx.

Solution Here, tan x is raised to an even power and sec x to an odd power. We use the identity tan2x=sec2x1 to write tan2xsecxdx=(sec2x1)secxdx=(sec3xsecx) dx=sec3xdxsecxdx

Next we integrate sec3xdx by parts. Choose u=secxanddv=sec2xdxdu=secxtanxdxv=sec2xdx=tanx

Then sec3xdx=secxtanxtan2xsecxdxudv=uvvdu=secxtanx(sec2x1)secxdxtan2x=sec2x1=secxtanxsec3xdx+secxdxWrite the integral as thesum of two integrals.2sec3xdx=secxtanx+secxdxAdd sec3x dx to both sides.sec3xdx=12[secxtanx+ln|secx+tanx|]Solve for sec3x dx;secx dx=ln|secx+tanx|.

Now we substitute this result in (2). tan2xsecxdx=sec3xdxsecxdx=12[secxtanx+ln|secx+tanx|]ln|secx+tanx|+C=12[secxtanxln|secx+tanx|]+C