Find ∫tan2xsecxdx.
Solution Here, tan x is raised to an even power and sec x to an odd power. We use the identity tan2x=sec2x−1 to write ∫tan2xsecxdx=∫(sec2x−1)secxdx=∫(sec3x−secx) dx=∫sec3xdx−∫secxdx
Next we integrate ∫sec3xdx by parts. Choose u=secxanddv=sec2xdxdu=secxtanxdxv=∫sec2xdx=tanx
Then ∫sec3xdx=secxtanx−∫tan2xsecxdx∫udv=uv−∫vdu=secxtanx−∫(sec2x−1)secxdxtan2x=sec2x−1=secxtanx−∫sec3xdx+∫secxdxWrite the integral as thesum of two integrals.2∫sec3xdx=secxtanx+∫secxdxAdd ∫sec3x dx to both sides.∫sec3xdx=12[secxtanx+ln|secx+tanx|]Solve for ∫sec3x dx;∫secx dx=ln|secx+tanx|.
Now we substitute this result in (2). ∫tan2xsecxdx=∫sec3xdx−∫secxdx=12[secxtanx+ln|secx+tanx|]−ln|secx+tanx|+C=12[secxtanx−ln|secx+tanx|]+C