Find ∫sin(3x)sin(2x)dx.
Solution We use the product-to-sum identity 2sinAsinB=cos(A−B)−cos(A+B).
Then 2sin(3x)sin(2x)=cos(3x−2x)−cos(3x+2x)sin(3x)sin(2x)=12[cosx−cos(5x)]
Then ∫sin(3x)sin(2x)dx=12∫[cosx−cos(5x)]dx=12∫cosx dx−12∫cos(5x)dx=↑u=5xdu=5 dx12sinx−12∫cosudu5=12sinx−110sin(5x)+C