Loading [MathJax]/jax/output/CommonHTML/jax.js

EXAMPLE 8Finding the Integral sin(3x)sin(2x)dx

Find sin(3x)sin(2x)dx.

Solution We use the product-to-sum identity 2sinAsinB=cos(AB)cos(A+B).

Then 2sin(3x)sin(2x)=cos(3x2x)cos(3x+2x)sin(3x)sin(2x)=12[cosxcos(5x)]

Then sin(3x)sin(2x)dx=12[cosxcos(5x)]dx=12cosx dx12cos(5x)dx=u=5xdu=5 dx12sinx12cosudu5=12sinx110sin(5x)+C