Finding an Integral Containing \(\sqrt{4-x^{2}}\)

Find \(\int \dfrac{dx}{x^{2}\sqrt{4-x^{2}}}\).

We exclude \(\theta =-\dfrac{\pi}{2}\) and \(\theta =\dfrac{\pi}{2}\) because they lead to \(x=\pm 2\), resulting in \(\sqrt{{4-x}^{2}}=0\).

Solution The integrand contains the square root \(\sqrt{4-x^{2}}\) that is of the form \(\sqrt{a^{2}-x^{2}}\), where \(a=2\). We use the substitution \(x=2\sin \theta\), \(-\dfrac{\pi }{2} \lt\theta \lt\dfrac{\pi }{2}\). Then \(dx=2\cos \theta \,d\theta\). Since \[ \begin{eqnarray*} {\sqrt{4-x^{2}}} \underset{\underset{\color{#0066A7}{\hbox{\(x=2\sin \theta\)}}}{\color{#0066A7}{\uparrow }}} {=} {\sqrt{4-4\sin ^{2}\theta }}=2{\sqrt{1-\sin ^{2}\theta }}=2{\sqrt{\cos ^{2}\theta }} \underset{\underset{\color{#0066A7}{\hbox{\(\text {cos}~\theta \gt 0~\text {since} -\dfrac{\pi}{2} \lt \theta \lt \dfrac{\pi}{2}\)}}}{\color{#0066A7}{\uparrow}}}{=}2\cos \theta \end{eqnarray*} \]

we have \[ \int\! \frac{dx}{x^{2}\sqrt{4-x^{2}}}=\int\! \frac{2\cos \theta \,d\theta }{ (4\sin ^{2}\theta )(2\cos \theta )}=\int\! \dfrac{d\theta }{4\sin ^{2}\theta }= \frac{1}{4}\int \csc ^{2}\theta \,d\theta =-\frac{1}{4}\cot \theta +C \]

The original integral is a function of \(x\), but the solution above is a function of \(\theta\). To express \(\cot \theta\) in terms of \(x\), refer to the right triangles drawn in Figure 4.

Figure 4 \(\sin \theta =\dfrac{x}{2}\), \(-\dfrac {\pi}{2} \lt \theta \lt \dfrac {\pi}{2}\)

Using the Pythagorean Theorem, the third side of each triangle is \(\sqrt{ 2^{2}-x^{2}}=\sqrt{4-x^{2}}\). So, \[ \cot \theta =\dfrac{\sqrt{4-x^{2}}}{x} \qquad -\dfrac{\pi }{2} \lt\theta \lt \dfrac{\pi }{2} \]

Then \[ \int \dfrac{dx}{x^{2}\sqrt{4-x^{2}}}=-\frac{1}{4}\cot \theta +C=-\frac{1}{4}\frac{\sqrt{4-x^{2}}}{x}+C=-\frac{\sqrt{4-x^{2}}}{4x}+C \]