Find \(\int \dfrac{dx}{x^{2}\sqrt{4-x^{2}}}\).
We exclude \(\theta =-\dfrac{\pi}{2}\) and \(\theta =\dfrac{\pi}{2}\) because they lead to \(x=\pm 2\), resulting in \(\sqrt{{4-x}^{2}}=0\).
we have \[ \int\! \frac{dx}{x^{2}\sqrt{4-x^{2}}}=\int\! \frac{2\cos \theta \,d\theta }{ (4\sin ^{2}\theta )(2\cos \theta )}=\int\! \dfrac{d\theta }{4\sin ^{2}\theta }= \frac{1}{4}\int \csc ^{2}\theta \,d\theta =-\frac{1}{4}\cot \theta +C \]
The original integral is a function of \(x\), but the solution above is a function of \(\theta\). To express \(\cot \theta\) in terms of \(x\), refer to the right triangles drawn in Figure 4.
Using the Pythagorean Theorem, the third side of each triangle is \(\sqrt{ 2^{2}-x^{2}}=\sqrt{4-x^{2}}\). So, \[ \cot \theta =\dfrac{\sqrt{4-x^{2}}}{x} \qquad -\dfrac{\pi }{2} \lt\theta \lt \dfrac{\pi }{2} \]
Then \[ \int \dfrac{dx}{x^{2}\sqrt{4-x^{2}}}=-\frac{1}{4}\cot \theta +C=-\frac{1}{4}\frac{\sqrt{4-x^{2}}}{x}+C=-\frac{\sqrt{4-x^{2}}}{4x}+C \]