Find ∫(4x2+9)1/2dx.
Solution ∫(4x2+9)1/2dx=∫√(2x)2+32dx
We use the substitution 2x=3tanθ, −π2<θ<π2. Then dx=32sec2θdθ and ∫(4x2+9)1/2dx=32∫√9tan2θ+9sec2θdθ=92∫√tan2θ+1sec2θdθ=92∫sec3θdθ=92[12secθtanθ+12ln|secθ+tanθ|]+C
To express the solution in terms of x, refer to the right triangles drawn in Figure 6.
Using the Pythagorean Theorem, the hypotenuse of each triangle is √(2x)2+9=√4x2+9. So, secθ=√4x2+93andtanθ=2x3−π2<θ<π2
491
Then ∫(4x2+9)1/2dx=94[secθtanθ+ln|secθ+tanθ|]+C=94[√4x2+93⋅2x3+ln|√4x2+93+2x3|]+C=94[2x√4x2+99+ln2x+√4x2+93]+C