Loading [MathJax]/jax/output/CommonHTML/jax.js

EXAMPLE 3Finding the Integral (4x2+9)1/2dx

Find (4x2+9)1/2dx.

Solution(4x2+9)1/2dx=(2x)2+32dx

We use the substitution 2x=3tanθ, π2<θ<π2. Then dx=32sec2θdθ and (4x2+9)1/2dx=329tan2θ+9sec2θdθ=92tan2θ+1sec2θdθ=92sec3θdθ=92[12secθtanθ+12ln|secθ+tanθ|]+C

Figure 6 tanθ=2x3, π2<θ<π2

To express the solution in terms of x, refer to the right triangles drawn in Figure 6.

Using the Pythagorean Theorem, the hypotenuse of each triangle is (2x)2+9=4x2+9. So, secθ=4x2+93andtanθ=2x3π2<θ<π2

491

Then (4x2+9)1/2dx=94[secθtanθ+ln|secθ+tanθ|]+C=94[4x2+932x3+ln|4x2+93+2x3|]+C=94[2x4x2+99+ln2x+4x2+93]+C