Find ∫√x2−4xdx.
Solution The integrand contains the square root √x2−4 that is of the form √x2−a2, where a=2. We use the substitution x=2secθ, 0≤θ<π2, π≤θ<3π2. Then dx=2secθtanθ dθ. Since √x2−4=↑x=2secθ√4sec2θ−4=2√sec2θ−1=2√tan2θ=↑tanθ≥0since 0≤θ<π2,π≤θ<3π22tanθ
we have ∫√x2−4xdx=∫(2tanθ)(2secθtanθdθ)2secθ=2∫tan2θdθ=↑tan2θ=sec2θ−12∫(sec2θ−1)dθ=2∫sec2θdθ−2∫dθ=2tanθ−2θ+C
To express the solution in terms of x, we use either the right triangles in Figure 7 or trigonometric identities.
Using identities, we find, tanθ=↑tan2θ=sec2θ−1tanθ≥0√sec2θ−1=√x24−1=12√x2−4
Also since secθ=x2, 0≤θ<π2, π≤θ<3π2, the inverse function θ=sec−1x2 is defined.
492
Then ∫√x2−4xdx=2tanθ−2θ+C=√x2−4−2sec−1x2+C