Find \(\int \frac{\sqrt{x^{2}-4}}{x} dx\).
we have \[ \begin{eqnarray*} \int \frac{\sqrt{x^{2}-4}}{x}dx&=&\int \frac{(2\tan \theta )(2\sec \theta \tan \theta \,d\theta )}{2\sec \theta }=2\int \tan ^{2}\theta d\theta \underset{\underset{\color{#0066A7}{\hbox{\(\tan^{2}\theta = \sec^{2}\theta -1\)}}}{\color{#0066A7}{\uparrow}}}{=}2\int (\sec^{2}\theta -1) d\theta \\ &=&2\int \sec^{2}\theta d\theta -2\int d\theta =2\tan \theta -2\theta +C \end{eqnarray*} \]
To express the solution in terms of \(x\), we use either the right triangles in Figure 7 or trigonometric identities.
Using identities, we find, \[ \begin{eqnarray*} \tan \theta \underset{\underset{\underset{{\color{#0066A7}{\hbox{\(\tan \theta \ge 0\)}}}}{\color{#0066A7}{\hbox{\(\tan^{2}\theta =\sec^{2}\theta -1\)}}}}{\color{#0066A7}{\uparrow}}}{=}\sqrt{\sec^{2}\theta -1}= \sqrt{\frac{x^{2}}{4}-1}=\frac{1}{2}\sqrt{x^{2}-4} \end{eqnarray*} \]
Also since \(\sec \theta =\dfrac{x}{2},\) \(0 \le \theta \lt \dfrac{\pi }{2},\) \(\pi \le \theta \lt \dfrac{3\pi }{2},\) the inverse function \(\theta =\sec ^{-1}\dfrac{x }{2}\) is defined.
492
Then \[ \int\frac{\sqrt{x^{2}-4}}{x}dx=2\tan \theta -2\theta+C=\sqrt{x^{2}-4} -2\sec ^{-1} \frac{x}{2}+C \]