Loading [MathJax]/jax/output/CommonHTML/jax.js

EXAMPLE 4Finding an Integral Containing x24

Find x24xdx.

Solution The integrand contains the square root x24 that is of the form x2a2, where a=2. We use the substitution x=2secθ, 0θ<π2, πθ<3π2. Then dx=2secθtanθ dθ. Since x24=x=2secθ4sec2θ4=2sec2θ1=2tan2θ=tanθ0since 0θ<π2,πθ<3π22tanθ

we have x24xdx=(2tanθ)(2secθtanθdθ)2secθ=2tan2θdθ=tan2θ=sec2θ12(sec2θ1)dθ=2sec2θdθ2dθ=2tanθ2θ+C

To express the solution in terms of x, we use either the right triangles in Figure 7 or trigonometric identities.

Using identities, we find, tanθ=tan2θ=sec2θ1tanθ0sec2θ1=x241=12x24

Also since secθ=x2, 0θ<π2, πθ<3π2, the inverse function θ=sec1x2 is defined.

492

Then x24xdx=2tanθ2θ+C=x242sec1x2+C