Processing math: 100%

EXAMPLE 6Use Trigonometric Substitution to Find a Definite Integral

Find the area under the graph of y=x21 (the upper half of the right branch of the hyperbola y2=x21) from 1 to 3. See Figure 9.

Figure 9 y=x21, 1x3

Solution The area A we seek is A=31x21dx. The integral contains a square root of the form x2a2, where a=1, so we use the trigonometric substitution x=secθ, 0θ<π2, πθ<3π2. Then dx=secθtanθdθ. Since the upper limit x=3 does not result in a nice angle (θ=sec13), we find the indefinite integral first and then use the Fundamental Theorem of Calculus.

With x=secθ and dx=secθtanθdθ, we have A=x21dx=sec2θ1secθtanθdθ=tanθsecθtanθdθ=tan2θsecθdθ

Since tanθ is raised to an even power and secθ to an odd power, we use the identity tan2θ=sec2θ1.Then A=x21dx=tan2θsecθdθ=(sec2θ1)secθdθ=sec3θdθsecθdθ=12[secθtanθ+ln|secθ+tanθ|]ln|secθ+tanθ|+C=12secθtanθ12ln|secθ+tanθ|+C

sec3θdθ=12[secθtanθ+ln|secθ+tanθ|]. Either integrate by parts, or use the reduction formula.

Now we express tanθ in terms of x=secθ, and apply the Second Fundamental Theorem of Calculus. A=31x21dx=secθ=xtanθ=x21[12xx2112ln|x+x21|]31=32812ln(3+8)=3212ln(3+22)