Find ∫dxx2+6x+10.
Solution The integrand contains the quadratic expression x2+6x+10. So, we complete the square. x2+6x+10=(x2+6x+9)+1=(x+3)2+1
Now we write the integral as ∫dxx2+6x+10=∫dx(x+3)2+1
and use the substitution u=x+3. Then du=dx, and ∫dxx2+6x+10=∫dx(x+3)2+1=∫duu2+1=tan−1u+C=tan−1(x+3)+C