Loading [MathJax]/jax/output/CommonHTML/jax.js

EXAMPLE 1Finding an Integral Containing x2+6x+10

Find dxx2+6x+10.

Solution The integrand contains the quadratic expression x2+6x+10. So, we complete the square. x2+6x+10=(x2+6x+9)+1=(x+3)2+1

Now we write the integral as dxx2+6x+10=dx(x+3)2+1

and use the substitution u=x+3. Then du=dx, and dxx2+6x+10=dx(x+3)2+1=duu2+1=tan1u+C=tan1(x+3)+C