Showing an Alternating Series Converges
Show that the alternating series \(\sum\limits_{k\,=\,0}^{\infty }\dfrac{(-1)^{k}}{(2k) !}=1-\dfrac{1}{2}+\dfrac{1}{24}-\dfrac{1}{720}+\cdots\) converges.
Solution We begin by confirming that \(\lim\limits_{n\rightarrow \infty }a_{n}=\lim\limits_{n\rightarrow \infty }\dfrac{1}{(2n)!}=0\). Next using the Algebraic Ratio test, we verify that the terms \(a_{k}=\dfrac{1}{(2k) !}\) are nonincreasing. Since \[ \begin{eqnarray*} \dfrac{a_{n+1}}{a_{n}} &=& \dfrac{\dfrac{1}{[ 2(n+1) ] !} }{\dfrac{1}{(2n) !}}=\dfrac{(2n) !}{( 2n+2) !} =\dfrac{(2n) !}{( 2n+2) (2n+1) (2n) !}\\ &=&\dfrac{1}{( 2n+2) (2n+1) }<1 \qquad \hbox{for all }n\geq 1 \end{eqnarray*} \]
the terms \(a_{k}\) are nonincreasing. By the Alternating Series Test, the series converges.