Processing math: 20%

EXAMPLE 2Showing an Alternating Series Converges

Show that the alternating series k=0(1)k(2k)!=112+1241720+ converges.

Solution We begin by confirming that lim. Next using the Algebraic Ratio test, we verify that the terms a_{k}=\dfrac{1}{(2k) !} are nonincreasing. Since \begin{eqnarray*} \dfrac{a_{n+1}}{a_{n}} &=& \dfrac{\dfrac{1}{[ 2(n+1) ] !} }{\dfrac{1}{(2n) !}}=\dfrac{(2n) !}{( 2n+2) !} =\dfrac{(2n) !}{( 2n+2) (2n+1) (2n) !}\\ &=&\dfrac{1}{( 2n+2) (2n+1) }<1 \qquad \hbox{for all }n\geq 1 \end{eqnarray*}

the terms a_{k} are nonincreasing. By the Alternating Series Test, the series converges.