Determine whether the series \(\sum\limits_{k=1}^{\infty }\dfrac{\sin k}{k^{2}}=\dfrac{\sin 1}{1^{2}}+\dfrac{\sin \,2}{2^{2}}+\dfrac{\sin 3}{3^{2}}+\cdots\) converges.
for all \(n\), and since \(\sum\limits_{k=1}^{\infty}\dfrac{1}{k^{2}}\) is a convergent \(p\)-series, then by the Comparison Test for Convergence, the series \(\sum\limits_{k=1}^{\infty }\left\vert \dfrac{\sin k}{k^{2}}\right\vert\) converges. Since \(\sum\limits_{k=1}^{\infty }\dfrac{\sin k}{k^{2}}\) is absolutely convergent, it follows that \(\sum\limits_{k=1}^{\infty }\dfrac{\sin k}{k^{2}}\) is convergent.