Use the Ratio Test to determine whether each series converges or diverges.
Solution (a) ∞∑k=1k4k is a series of nonzero terms; an+1=n+14n+1 and an=n4n. The absolute value of their ratio is |an+1an|=n+14n+1n4n=n+14n+1⋅4nn=n+14n
Then lim
Since the limit is less than 1, the series converges.
(b) \sum\limits_{k\,=\,1}^{\infty }\dfrac{2^{k}}{k} is a series of nonzero terms; a_{n+1}=\dfrac{2^{n+1}}{n+1} and a_{n}=\dfrac{ 2^{n}}{n}. The absolute value of their ratio is \left\vert \frac{a_{n+1}}{a_{n}}\right\vert =\frac{2^{n+1}}{n+1} \cdot \frac{ n}{2^{n}} =\frac{2n}{n+1}
Then \lim\limits_{n\,\rightarrow \,\infty }\left\vert \frac{a_{n+1}}{a_{n}} \right\vert =\lim\limits_{n\,\rightarrow \,\infty }\frac{2n}{n+1}=2>1
Since the limit is greater than 1, the series diverges.
592
(c) \sum\limits_{k\,=\,1}^{\infty }\dfrac{3k+1}{k^{2}} is a series of nonzero terms; a_{n+1}=\dfrac{3(n+1) +1}{(n+1) ^{2}}=\dfrac{3n+4}{(n+1) ^{2}} and a_{n}=\dfrac{3n+1 }{n^{2}}. The absolute value of their ratio is \left\vert \frac{a_{n+1}}{a_{n}}\right\vert {=}\left[ \frac{3n+4}{(n+1)^{2}} \right] \left( \frac{n^{2}}{3n+1}\right) {=}\left( \frac{3n+4}{3n+1}\right) \left( \frac{n^{2}}{n^{2}+2n+1}\right) =\dfrac{3n^{3}+4n^{2}}{3n^{3}+7n^{2}+5n+1}
Then \lim\limits_{n\,\rightarrow \,\infty }\left\vert \frac{a_{n+1}}{a_{n}} \right\vert =\lim\limits_{n\,\rightarrow \,\infty }\dfrac{3n^{3}+4n^{2}}{3n^{3}+7n^{2}+5n+1}=1
The Ratio Test gives no information about this series. Another test must be used. \bigg({\rm{You}}\, {\rm{can}}\, {\rm{show}}\, {\rm{that}}\, {\rm{the}}\, {\rm{series}}\, {\rm{diverges}}\, {\rm{by}}\, {\rm{comparing}}\, {\rm{it}}\, {\rm{to}}\, {\rm{the}}\, {\rm{harmonic}}\, {\rm{series}}\, \sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k}.\bigg)
(d) \sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k!} is a series of nonzero terms; a_{n+1}=\dfrac{1}{(n+1) !} and a_{n}=\dfrac{ 1}{n!}. The absolute value of their ratio is \left\vert \frac{a_{n+1}}{a_{n}}\right\vert =\frac{n!}{(n+1)!} = \frac{1}{n+1}
Then \lim_{n\rightarrow \infty }\left\vert \frac{a_{n+1}}{a_{n}}\right\vert =\lim_{n\rightarrow \infty }\frac{1}{n+1}=0
Since the limit is less than 1, the series \sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k!} converges.
In Section 8.9, we show that \sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k!}=e.