Find all numbers x for which each power series in x converges.
601
Solution (a) For the series ∞∑k=0xkk!, we use the Ratio Test with an=xnn!andan+1=xn+1(n+1)!
Then lim
Since the limit is less than 1 for every number x, it follows from the Ratio Test that the power series \sum\limits_{k\,=\,0}^{\infty }\dfrac{x^{k}}{k!} is absolutely convergent for all real numbers.
Since \sum\limits_{k\,=\,0}^{\infty} \dfrac{{ x}^{k}}{{k!}} converges absolutely for every number x, the limit of the nth term equals {0}. That is, \lim\limits_{n\,\rightarrow \,\infty }\dfrac{{x}^{n}}{{n!}}={ 0} for every number x.
(b) For \sum\limits_{k\,=\,0}^{\infty }\dfrac{kx^{k}}{4^{k}}, we use the Ratio Test with a_{n}=\dfrac{nx^{n}}{4^{n}} and a_{n+1}=\dfrac{ (n+1)x^{n+1}}{4^{n+1}}. Then \begin{eqnarray*} \lim\limits_{n\,\rightarrow \,\infty }\left\vert \frac{a_{n+1}}{a_{n}} \right\vert &=& \lim\limits_{n\,\rightarrow \,\infty }\dfrac{\dfrac{ (n+1)\,\vert x\vert ^{n+1}}{4^{n+1}}}{\dfrac{n\,\,\vert x\vert ^{n}}{4^{n}}}=\lim\limits_{n\,\rightarrow \,\infty }\frac{ (n+1)\,|x|^{n+1}(4^{n})}{4^{n+1}\cdot n\,|x|^{n}} \\ &=& \vert x\vert \,\lim\limits_{n\,\rightarrow \,\infty }\frac{n+1}{4n}=\frac{|x|}{4} \end{eqnarray*}
By the Ratio Test, the series converges absolutely if \dfrac{|x|}{4} < 1, or equivalently if \vert x\vert < 4. It diverges if \dfrac{|x|}{4} \gt 1 or equivalently if \vert x\vert >4. The Ratio Test gives no information when \dfrac{|x|}{4}=1, that is, when x=-4 or x=4. However, we can check these values directly by replacing x by 4 and -4.
For x=4, the series becomes \sum_{k\,=\,0}^{\infty }\frac{k4^{k}}{4^{k}}=\sum_{k=1}^{\infty }k=1+2+\cdots
which diverges. For x=-4, the series becomes \sum_{k=0}^{\infty }\frac{k(-4)^{k}}{4^{k}}=\sum_{k=0}^{\infty }\frac{ (-1)^{k}k(4^{k})}{4^{k}}=\sum_{k=0}^{\infty }(-1)^{k}k=-1+2-3+\cdots
which also diverges. (Look at the sequence of partial sums.)
The series \sum\limits_{k\,=\,0}^{\infty }\dfrac{kx^{k}}{4^{k}} converges absolutely for -4< x< 4 and diverges for \vert x\vert \geq 4.
(c) For \sum\limits_{k\,=\,0}^{\infty }k!x^{k}, we use the Ratio Test with a_{n}=n!\,x^{n} and a_{n+1}=(n+1)!\,x^{n+1}. Then \lim\limits_{n\,\rightarrow \,\infty }\left\vert \frac{a_{n+1}}{a_{n}} \right\vert =\lim\limits_{n\,\rightarrow \,\infty }\frac{(n+1)!\,\vert x\vert ^{n+1}}{n\dot{!}\,\vert x\vert ^{n}}=\vert x\vert\,\lim\limits_{n\,\rightarrow \,\infty } (n+1) =\left\{ \begin{array}{ll} 0 & \hbox{if} \, x=0 \\[4pt] \infty & \hbox{if} \, x\neq 0 \end{array} \right.
We conclude that the power series \sum\limits_{k\,=\,0}^{\infty }k!x^{k} converges only when x=0. For any other number x, the power series diverges.