Find the radius of convergence R and the interval of convergence of the power series ∞∑k=0(−1)k(x−2)kk+1
Solution ∞∑k=0(−1)k(x−2)kk+1 is a power series centered at 2. We use the Ratio Test with an=(−1)n(x−2)nn+1 and an+1=(−1)n+1(x−2)n+1n+2. Then lim
604
The series converges absolutely if \vert x-2\vert < 1, or equivalently if 1 < x < 3. The radius of convergence is R=1. We check the endpoints x=1 and x=3 separately.
If x=1, \begin{eqnarray*} \sum\limits_{k\,=\,0}^{\infty }(-1)^{k}\dfrac{(x-2)^{k}}{k+1}&=&\sum \limits_{k\,=\,0}^{\infty }(-1)^{k}\dfrac{(-1) ^{k}}{k+1} =\sum\limits_{k\,=\,0}^{\infty }\dfrac{(-1) ^{2k}}{k+1} =\sum\limits_{k\,=\,0}^{\infty }\dfrac{1}{k+1}\nonumber \\ &=&1+\frac{1}{2}+\frac{1}{3}+\cdots + \frac{1}{n+1}+\cdots \end{eqnarray*}
which is the divergent harmonic series.
If x=3, \sum\limits_{k\,=\,0}^{\infty }(-1)^{k}\dfrac{(x-2)^{k}}{k+1}=\sum \limits_{k\,=\,0}^{\infty }(-1)^{k}\dfrac{1}{k+1}=1-\frac{1}{2}+\frac{1}{3}- \frac{1}{4}+\cdots +\frac{(-1)^{n}}{n+1}+\cdots
which is the convergent alternating harmonic series.
The series \sum\limits_{k\,=\,0}^{\infty }(-1)^{k}\dfrac{(x-2) ^{k} }{k+1} converges for 1 < x\leq 3, as shown in Figure 28.