Processing math: 33%

EXAMPLE 4Finding the Interval of Convergence of a Power Series

Find the radius of convergence R and the interval of convergence of the power series k=0(1)k(x2)kk+1

Solutionk=0(1)k(x2)kk+1 is a power series centered at 2. We use the Ratio Test with an=(1)n(x2)nn+1 and an+1=(1)n+1(x2)n+1n+2. Then lim

604

The series converges absolutely if \vert x-2\vert < 1, or equivalently if 1 < x < 3. The radius of convergence is R=1. We check the endpoints x=1 and x=3 separately.

If x=1, \begin{eqnarray*} \sum\limits_{k\,=\,0}^{\infty }(-1)^{k}\dfrac{(x-2)^{k}}{k+1}&=&\sum \limits_{k\,=\,0}^{\infty }(-1)^{k}\dfrac{(-1) ^{k}}{k+1} =\sum\limits_{k\,=\,0}^{\infty }\dfrac{(-1) ^{2k}}{k+1} =\sum\limits_{k\,=\,0}^{\infty }\dfrac{1}{k+1}\nonumber \\ &=&1+\frac{1}{2}+\frac{1}{3}+\cdots + \frac{1}{n+1}+\cdots \end{eqnarray*}

which is the divergent harmonic series.

If x=3, \sum\limits_{k\,=\,0}^{\infty }(-1)^{k}\dfrac{(x-2)^{k}}{k+1}=\sum \limits_{k\,=\,0}^{\infty }(-1)^{k}\dfrac{1}{k+1}=1-\frac{1}{2}+\frac{1}{3}- \frac{1}{4}+\cdots +\frac{(-1)^{n}}{n+1}+\cdots

which is the convergent alternating harmonic series.

The series \sum\limits_{k\,=\,0}^{\infty }(-1)^{k}\dfrac{(x-2) ^{k} }{k+1} converges for 1 < x\leq 3, as shown in Figure 28.