Represent each of the following functions by a power series centered at \(0\):
(a) In the geometric series for \(f(x) =\dfrac{1}{1-x} , \) we replace \(x\) by \(2x^{2}\). This series converges if \(\vert 2x^{2}\vert < 1\), or equivalently if \(-\dfrac{\sqrt{2}}{2} < x < \dfrac{\sqrt{2}}{2}\). Then on the open interval \(\left( -\dfrac{\sqrt{2}}{2},\,\dfrac{\sqrt{2}}{2}\right)\), the function \(h\,(x) =\dfrac{1}{ 1-2x^{2}}\) is represented by the power series \[ \begin{eqnarray*} h(x) &=& \dfrac{1}{1-2x^{2}}=1+(2x^{2}) + (2x^{2}) ^{2}+ (2x^{2})^{3}+ \cdots \\ &=& 1+2x^{2}+4x^{4}+8x^{6}+\cdots+2^{n}x^{2n} +\cdots=\sum\limits_{k\,=\,0}^{ \infty }(2x^{2}) ^{k}= \sum\limits_{k\,=\,0}^{\infty }2^{k}x^{2k} \end{eqnarray*} \]
(b) We begin by writing \[ g(x) =\dfrac{1}{3+x}=\dfrac{1}{3}\left(\dfrac{1}{1+\dfrac{x}{3}} \right) =\dfrac{1}{3}\left[ \dfrac{1}{1-\left( -\dfrac{x}{3}\right) }\right] \]
606
Now in the geometric series for \(f(x) =\dfrac{1}{1-x}\), replace \( x\) by \(-\dfrac{x}{3}\). This series converges if \(\left\vert -\dfrac{x}{3} \right\vert < 1\), or equivalently if \(-3< x < 3\). Then in the open interval \( (-3,3) \), \(g(x) =\dfrac{1}{3+x}\) is represented by the power series \[ \begin{eqnarray*} g\,(x) &=& \dfrac{1}{3+x}=\dfrac{1}{3}\left[ 1+\left( -\dfrac{x}{3} \right) +\left( -\dfrac{x}{3}\right) ^{2}+\left( -\dfrac{x}{3}\right) ^{3}+\cdots\right] =\dfrac{1}{3}\sum\limits_{k\,=0}^{\infty }(-1) ^{k}\left( \dfrac{x}{3}\right) ^{k}\nonumber \\ &=&\sum\limits_{k\,=0}^{\infty }\dfrac{ (-1) ^{k}x^{k}}{3^{k+1}} \end{eqnarray*} \]
(c) \(F(x) =\dfrac{x^{2}}{1-x}=x^{2}\left( \dfrac{1}{ 1-x}\right)\). Now for all numbers in the interval \((-1,\,1)\), \[ \dfrac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\cdots \]
So for any number \(x\) in the interval of convergence, \(-1< x < 1\), we have \[ F(x) =x^{2}\left( 1+x+x^{2}+\cdots+x^{n}+\cdots\right) =x^{2}+x^{3}+x^{4}+\cdots+x^{n+2}+\cdots\,=\sum\limits_{k\,=2}^{\infty }x^{k} \]