Find the Maclaurin expansion for f(x)=cosx.
Solution We apply the differentiation property of power series to the Maclaurin expansion for sinx. ddxsinx=ddx(x−x33!+x55!−⋯+(−1)nx2n+1(2n+1)!+⋯)=ddx∞∑k=0(−1)kx2k+1(2k+1)!
Then \bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{ \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots +(-1)^{n}\frac{x^{2n}}{(2n)!}+\cdots =\sum\limits_{k\,=\,0}^{\infty }\,(-1) ^{k}\frac{x^{2k}}{(2k) !}}}
for all numbers x.