Show that \(\{ s_{n}\} =\left\{(-1) ^{n}\dfrac{1}{n}\right\}\) converges and find its limit.
Notice that \(s_{n}\) is bounded by \(\{a_{n}\} =\left\{ -\dfrac{1}{n}\right\} \) and \(\{b_{n}\} =\left\{ \dfrac{1}{n}\right\}\). Since \(a_{n}\leq s_{n}\leq b_{n}\) for all \(n\) and \(\lim\limits_{n\rightarrow \infty }a_{n}=\lim\limits_{n\rightarrow \infty }\left( -\dfrac{1}{n}\right) =0\), and \(\lim\limits_{n\rightarrow \infty }b_{n}=\lim\limits_{n\rightarrow \infty }\dfrac{1}{n}=0\), then by the Squeeze Theorem, the sequence \(\{ s_{n}\} =\left\{ (-1) ^{n}\dfrac{1}{n}\right\}\) converges and \(\lim\limits_{n\rightarrow \infty } s_n=0 \).