Processing math: 11%

EXAMPLE 6Showing a Sequence Converges

Show {ln(2n+3)} converges and find its limit.

Solution Since lim [from Example 5(a)], the sequence \{ s_{n}\}=\left\{ \dfrac{2}{n}+3\right\} converges to 3. The function f(x) =\ln x is continuous on its domain, so it is continuous at 3. Then \lim\limits_{n\rightarrow \infty }f( s_{n}) =\lim\limits_{n\rightarrow \infty }f \left( \dfrac{2}{n}+3\right) =\lim\limits_{n\rightarrow \infty }\ln \left( \dfrac{2}{n}+3\right) =\ln\left[\lim\limits_{n\rightarrow \infty } \left(\dfrac{2}{n}+3\right) \right] =\ln 3

So, the sequence \left\{\ln \left( \dfrac{2}{n}+3\right) \right\} converges to \ln 3.