Processing math: 50%

EXAMPLE 8Using a Related Function to Show a Sequence Converges

Show that {3n2+5n26n26n+5} converges and find its limit.

Solution The function f(x)=3x2+5x26x26x+5x>0

is a related function of the sequence {3n2+5n26n26n+5}. Since lim

the sequence \left\{ \dfrac{3n^{2}+5n-2}{6n^{2}-6n+5}\right\} converges and \lim\limits_{n\,\rightarrow \,\infty } \dfrac{3n^{2}+5 n-2}{6n^{2}-6n+5}=\dfrac{1}{2}.