Show that {3n2+5n−26n2−6n+5} converges and find its limit.
Solution The function f(x)=3x2+5x−26x2−6x+5x>0
is a related function of the sequence {3n2+5n−26n2−6n+5}. Since lim
the sequence \left\{ \dfrac{3n^{2}+5n-2}{6n^{2}-6n+5}\right\} converges and \lim\limits_{n\,\rightarrow \,\infty } \dfrac{3n^{2}+5 n-2}{6n^{2}-6n+5}=\dfrac{1}{2}.