Using L’Hôpital’s Rule to Show a Sequence Converges
Show that \(\left\{ \dfrac{n}{e^{n}}\right\} \) converges and find its limit.
Solution We begin with the related function \(f(x)=\dfrac{x}{e^{x}},\) \(x>0\). To find \(\lim\limits_{x\rightarrow \infty }f(x)\), we use L’Hôpital’s Rule. \[ \begin{eqnarray*} \lim_{x\,\rightarrow \,\infty }\,f(x) &=& \lim_{x\,\rightarrow \,\infty }\frac{x}{e^{x}} \underset{\underset{\color{#0066A7}{\rm Use L’Hôpital’s Rule}}{\color{#0066A7}{\uparrow}}}{=} \lim_{x\,\rightarrow\,\infty }\frac{1}{e^{x}}=0 \\[-8pt] \end{eqnarray*} \]
Since \(\lim\limits_{x\,\rightarrow \,\infty }\,f(x)=0\), the sequence \(\left\{ \dfrac{n}{e^{n}}\right\}\) converges and \(\lim\limits_{n\,\rightarrow \,\infty}\dfrac{n}{e^{n}}=0\).