Show that {nen} converges and find its limit.
Solution We begin with the related function f(x)=xex, x>0. To find lim, we use L’Hôpital’s Rule. \begin{eqnarray*} \lim_{x\,\rightarrow \,\infty }\,f(x) &=& \lim_{x\,\rightarrow \,\infty }\frac{x}{e^{x}} \underset{\underset{\color{#0066A7}{\rm Use L’Hôpital’s Rule}}{\color{#0066A7}{\uparrow}}}{=} \lim_{x\,\rightarrow\,\infty }\frac{1}{e^{x}}=0 \\[-8pt] \end{eqnarray*}
Since \lim\limits_{x\,\rightarrow \,\infty }\,f(x)=0, the sequence \left\{ \dfrac{n}{e^{n}}\right\} converges and \lim\limits_{n\,\rightarrow \,\infty}\dfrac{n}{e^{n}}=0.