Processing math: 100%

EXAMPLE 3Determining Whether a Series Converges or Diverges

Determine whether the series k=1k=1+2+3+ converges or diverges.

Solution The sequence {Sn} of partial sums is S1=1S2=1+2S3=1+2+3Sn=1+2+3++n

557

To express Sn in a way that will make it easy to find limnSn, we use the formula for the sum of the first n integers: Sn=nk=1k=1+2+3++n=n(n+1)2

Since limnSn=limnn(n+1)2=, the sequence {Sn} of partial sums diverges. So, the series k=1k diverges.