Determine whether the series ∞∑k=1k=1+2+3+⋯ converges or diverges.
Solution The sequence {Sn} of partial sums is S1=1S2=1+2S3=1+2+3⋮Sn=1+2+3+⋯+n
557
To express Sn in a way that will make it easy to find limn→∞Sn, we use the formula for the sum of the first n integers: Sn=n∑k=1k=1+2+3+⋯+n=n(n+1)2
Since limn→∞Sn=limn→∞n(n+1)2=∞, the sequence {Sn} of partial sums diverges. So, the series ∞∑k=1k diverges.