Processing math: 12%
EXAMPLE 1
Using the Test for Divergence
(a)
∞
∑
k
=
1
87
diverges, since
lim
.
(b)
\sum\limits_{k\,=\,1}^{\infty }k
diverges, since
\lim\limits_{n\,\rightarrow \,\infty }n=\infty \neq 0
.
(c)
\sum\limits_{k\,=\,1}^{\infty }(-1)^{k}
diverges, since
\lim\limits_{n\,\rightarrow \,\infty }\,(-1)^{n}
does not exist.
(d)
\sum\limits_{k\,=\,1}^{\infty }2^{k}
diverges, since
\lim\limits_{n\,\rightarrow \,\infty }\,2^{n}=\infty \neq 0
.
Next