Determine whether each series converges or diverges. If it converges, find its sum.
(b) \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{2}{k}\,{=}\,\sum\limits_{k\,=\,1}^{\infty }\,\left(2\cdot \dfrac{1}{k}\right)\). Since the harmonic series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k}\) diverges, the series \(\sum\limits_{k\,=\,1}^{\infty }\,\left( 2\cdot \dfrac{1}{k}\right)=\sum\limits_{k\,=\,1}^{\infty }\dfrac{2}{k}\) diverges.
(c) Since the series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{ 2^{k-1}}\) and the series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{3^{k-1}}\) are both convergent geometric series, the series defined by \( \sum\limits_{k\,=\,1}^{\infty }\,\left( \dfrac{1}{2^{k-1}}+\dfrac{1}{3^{k-1}} \right) \) is also convergent. The sum is \[ \sum\limits_{k\,=\,1}^{\infty }\,\left( \dfrac{1}{2^{k-1}}+\dfrac{1}{3^{k-1}} \right) =\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{2^{k-1}} +\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{3^{k-1}}=\frac{1}{1-\dfrac{1}{2}}+ \frac{1}{1-\dfrac{1}{3}}=2+\frac{3}{2}=\dfrac{7}{2} \]