Processing math: 75%

EXAMPLE 3Using the Integral Test

Determine whether the series k=1ak=k=14k2+1 converges or diverges.

Solution The function f(x)=4x2+1 is defined on the interval [1,) and is continuous, positive, and decreasing for all numbers x1. Also, ak=f(k) for all positive integers k. Using the Integral Test, we find 14x2+1dx:lim

Since the improper integral converges, the series \sum\limits_{k\,=\,1}^{\infty}\dfrac{4}{k^{2}+1} converges.