Determine whether the series ∞∑k=1ak=∞∑k=14k2+1 converges or diverges.
Solution The function f(x)=4x2+1 is defined on the interval [1,∞) and is continuous, positive, and decreasing for all numbers x≥1. Also, ak=f(k) for all positive integers k. Using the Integral Test, we find ∫∞14x2+1dx:lim
Since the improper integral converges, the series \sum\limits_{k\,=\,1}^{\infty}\dfrac{4}{k^{2}+1} converges.