Processing math: 77%

EXAMPLE 4Using the Integral Test

Determine whether the series k=1ak= k=12kk2+1 converges or diverges.

Solution The function f(x)=2xx2+1 is continuous, positive, and decreasing since f(x)0 for all numbers x1, and ak=f(k) for all positive integers k. Using the Integral Test, we find 12xx2+1dx:lim

Since the improper integral diverges, the series \sum\limits_{k=1}^{\infty}\dfrac{2k}{k^{2}+1} also diverges.