Determine whether the series ∞∑k=21k(lnk)2 converges or diverges.
Solution The function f(x)=1x(lnx)2 is continuous, positive, and decreasing on the interval [2,∞). Also 1k(lnk)2=f(k) for all integers greater than or equal to 2. Using the Integral Test, we investigate the improper integral ∫∞2dxx(lnx)2. We find an antiderivative of 1x(lnx)2 by using the substitution u=lnx, du=1xdx. Then, ∫dxx(lnx)2=∫duu2=−1u+C=−1lnx+C
Now we find the improper integral ∫∞2dxx(lnx)2:lim
Since the improper integral \int_{2}^{\infty }\dfrac{dx}{x(\ln x)^{2}} converges, the series \sum\limits_{k\,=2}^{\infty }\dfrac{1}{k(\ln k) ^{2}} converges.