Determine whether the series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{2k^{3/2}+5}\) converges or diverges.
This leads us to choose the \(p\)-series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k^{3/2}},\) which converges, and use the Limit Comparison Test with \[ a_{n}=\dfrac{1}{2n^{3/2}+5} \qquad \hbox{and}\qquad b_{n}=\dfrac{1}{n^{3/2}} \] \[ \lim\limits_{n\rightarrow \infty }\dfrac{a_{n}}{b_{n}}=\lim_{n\,\rightarrow \,\infty }\frac{\dfrac{1}{2n^{3/2}+5}}{\dfrac{1}{n^{3/2}}} =\lim\limits_{n\rightarrow \infty }\frac{n^{3/2}}{2n^{3/2}+5} =\lim\limits_{n\rightarrow \infty }\dfrac{1}{2+\dfrac{5}{n^{3/2}}}=\frac{1}{2} \]
Since the limit is a positive number and the \(p\)-series \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{k^{3/2}}\) converges, then by the Limit Comparison Test, \(\sum\limits_{k\,=\,1}^{\infty }\dfrac{1}{2k^{3/2}+5}\) also converges.