(a) Graph the polar equation \(r=2 \ \cos ( 2\theta ) ,\) \(0\leq \theta \leq 2\pi\).
(b) Find parametric equations for \(r=2 \ \cos ( 2\theta )\).
Graphs of polar equations of the form \(r=a \ \cos (n\theta )\) or \(r =a \ \sin ( n\theta ),\;a>0,\;n\) an integer, are called roses. If \(n\) is an even integer, the rose has \(2n\) petals and passes through the pole \(4n\) times. If \(n\) is an odd integer, the rose has \(n\) petals and passes through the pole \(2n\) times.
\(\theta\) | \(r=2 \ \cos ( 2\theta )\) | \(( r,\theta )\) |
---|---|---|
\(0\) | \(2(1) =2\) | \(( 2,0)\) |
\(\dfrac{\pi }{6}\) | \(2\left( \dfrac{1}{2}\right) =1\) | \(\left( 1,\dfrac{\pi }{6}\right)\) |
\(\dfrac{\pi }{4}\) | \(2\left( 0\right) =0\) | \(\left( 0,\dfrac{\pi }{4}\right)\) |
\(\dfrac{\pi }{3}\) | \(2\left( -\dfrac{1}{2}\right) =-1\) | \(\left( -1,\dfrac{\pi }{3}\right)\) |
\(\dfrac{\pi }{2}\) | \(2\left( -1\right) =-2\) | \(\left(-2,\dfrac{\pi }{2}\right)\) |
\(\dfrac{2\pi }{3}\) | \(2\left( -\dfrac{1}{2}\right) =-1\) | \(\left( -1,\dfrac{2\pi }{3}\right)\) |
\(\dfrac{3\pi }{4}\) | \(2\left( 0\right) =0\) | \(\left( 0,\dfrac{3\pi }{4}\right)\) |
\(\dfrac{5\pi }{6}\) | \(2\left( \dfrac{1}{2}\right) =1\) | \(\left( 1,\dfrac{5\pi }{6}\right)\) |
\(\pi\) | \(2(1) =2\) | \(( 2, \ \pi)\) |
\(\dfrac{7\pi }{6}\) | \(2\left( \dfrac{1}{2}\right) =1\) | \(\left( 1,\dfrac{7\pi }{6}\right)\) |
\(\dfrac{5\pi }{4}\) | \(2(0) =0\) | \(\left( 0,\dfrac{5\pi }{4}\right)\) |
\(\dfrac{4\pi }{3}\) | \(2\left( -\dfrac{1}{2}\right) =-1\) | \(\left( -1,\dfrac{4\pi }{3}\right)\) |
\(\dfrac{3\pi }{2}\) | \(2\left( -1\right) =-2\) | \(\left( -2,\dfrac{3\pi }{2}\right)\) |
\(\dfrac{5\pi }{3}\) | \(2\left( -\dfrac{1}{2}\right) =-1\) | \(\left( -1,\dfrac{5\pi }{3}\right)\) |
\(\dfrac{7\pi }{4}\) | \(2\left(0\right) =0\) | \(\left( 0,\dfrac{7\pi }{4}\right)\) |
\(\dfrac{11\pi }{6}\) | \(2\left( \dfrac{1}{2}\right) =1\) | \(\left( 1,\dfrac{11\pi }{6}\right)\) |
\( 2\pi\) | \(2(1) =2\) | \(( 2, \ 2\pi )\) |
(b) Parametric equations for \(r=2 \ \cos ( 2\theta )\): \begin{equation*} x=r \ \cos \theta =2 \ \cos ( 2\theta ) \ \cos \theta \qquad y=r \ \sin \theta =2 \ \cos ( 2\theta ) \ \sin \theta \end{equation*}
where \(\theta\) is the parameter, and if \(0\leq \theta \leq 2\pi ,\) then the graph is traced out exactly once in the counterclockwise direction.