Find the arc length s of the logarithmic spiral represented by r=f(θ)=e3θ from θ=0 to θ=2.
Solution We use the arc length formula s=∫βα√r2+(drdθ)2dθ with r=e3θ. Then drdθ=3e3θ and s=∫20√(e3θ)2+(3e3θ)2dθ=∫20√10e6θdθ=√10∫20e3θdθ=√10[e3θ3]20=√103(e6−1)