Processing math: 100%

EXAMPLE 6Finding the Surface Area of a Solid of Revolution

Find the surface area of the solid of revolution generated by revolving the arc of the circle r=a, a>0, 0θπ4, about the polar axis.

Solution See Figure 55. We find the surface area S using formula (1). Since r=f(θ)=a,f(θ)=0. Then S=2πβαf(θ)sinθ[f(θ)]2+[f(θ)]2 dθ=2ππ/40asinθa2dθ=2πa2π/40sinθdθ=2πa2[cosθ]π/40=2πa2(22+1)=πa2(22)