The plane curve represented by the parametric equations \(x(t)=t^{3}-4t,\quad y(t) =t^{2}\), crosses itself at the point \((0,4)\), and so has two tangent lines there, as shown in Figure 15. Find equations for these tangent lines.
We exclude \(t=0,\) since if \(t=0,\) then \(y\neq 4.\) So we investigate only \( t=-2\) and \(t=2.\) Since \(\dfrac{dx}{dt}=3t^{2}-4\neq 0\) for \(t=-2\) and \(t=2,\) the slope of the tangent lines is given by \[ \begin{equation*} \frac{dy}{dx}=\frac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\frac{\dfrac{d}{dt} ( t^{2}) }{\dfrac{d}{dt}( t^{3}-4t) }=\dfrac{2t}{ 3t^{2}-4} \end{equation*} \]
650
When \(t=-2\), the slope of the tangent line is \[ \begin{equation*} \dfrac{dy}{dx}=\dfrac{2( -2) }{3( -2) ^{2}-4}=\dfrac{-4 }{8}=-\dfrac{1}{2} \end{equation*} \]
and an equation of the tangent line at the point \(( 0,4) \) is \[ \begin{eqnarray*} y-4 &=&-\dfrac{1}{2}( x-0) \\ y &=&-\dfrac{1}{2}x+4 \end{eqnarray*} \]
When \(t=2\), the slope of the tangent line at the point \(( 0,4) \) is \[ \begin{equation*} \dfrac{dy}{dx}=\dfrac{2( 2) }{3( 2) ^{2}-4}=\dfrac{4}{8 }=\dfrac{1}{2} \end{equation*} \]
and an equation of the tangent line at \(( 0,4) \) is \[ \begin{eqnarray*} y-4 &=&\dfrac{1}{2}( x-0) \\ y &=&\dfrac{1}{2}x+4 \end{eqnarray*} \]