Find the rectangular coordinates of each point whose polar coordinates are:
(a) (4,π3)
(b) (−2,3π4)
(c) (−3,−5π6)
Solution (a) We use the equations x=rcosθ and y=rsinθ with r=4 and θ=π3. x=4cosπ3=4(12)=2andy=4sinπ3=4(√32)=2√3
The rectangular coordinates are (2,2√3).
(b) We use the equations x=rcosθ and y=rsinθ with r=−2 and θ=3π4. x=−2cos3π4=−2(−√22)=√2andy=−2sin3π4=−2(√22)=−√2
The rectangular coordinates are (√2,−√2).
(c) We use the equations x=rcosθ and y=rsinθ with r=−3 and θ=−5π6. x=−3cos(−5π6)=−3(−√32)=3√32y=−3sin(−5π6)=−3(−12)=32
The rectangular coordinates are (3√32,32).