Processing math: 100%

EXAMPLE 3Converting from Polar Coordinates to Rectangular Coordinates

Find the rectangular coordinates of each point whose polar coordinates are:

(a) (4,π3)

(b) (2,3π4)

(c) (3,5π6)

Solution (a) We use the equations x=rcosθ and y=rsinθ with r=4 and θ=π3. x=4cosπ3=4(12)=2andy=4sinπ3=4(32)=23

The rectangular coordinates are (2,23).

(b) We use the equations x=rcosθ and y=rsinθ with r=2 and θ=3π4. x=2cos3π4=2(22)=2andy=2sin3π4=2(22)=2

The rectangular coordinates are (2,2).

(c) We use the equations x=rcosθ and y=rsinθ with r=3 and θ=5π6. x=3cos(5π6)=3(32)=332y=3sin(5π6)=3(12)=32

The rectangular coordinates are (332,32).