Printed Page 828
828
Concepts and Vocabulary
Multiple Choice The set of all points P for which the distance d(P,P0)<δ is called [(a) a δ position, (b) an ε -value, (c) a δ-neighborhood] of P0.
(c)
lim__________.
16
True or False One way to show that \lim\limits_{(x, y)\rightarrow (0, 0)}f(x)=L is to find two lines y=m_{1}x and y=m_{2}x for which \lim\limits_{(x, y)\rightarrow (0, 0)}f(x)=L.
False
True or False In order for the limit of a function f to exist at a point P_{0}, the limit of f must be the same along every curve in the domain of f that contains P_{0}.
True
Multiple Choice A point P_{0} is [(a) an interior, (b) an exterior, (c) a boundary, (d) an isolated] point of S if every \delta -neighborhood of P_{0} contains points both in S and not in S.
{\bf (c)}
Multiple Choice If every point of S is an interior point, then S is [(a) an open, (b) a closed, (c) an interior] set.
{\bf (a)}
True or False If two functions f and g are both continuous at the point P_{0}, then the quotient \dfrac{g}{f} is also continuous at P_{0}.
False
\lim\limits_{(x,y) \rightarrow ( 0,0) }e^{x^{2}+y^{2}}=__________.
1
Skill Building
In Problems 9–24, use algebraic properties of limits of two variables (p. 821) to find each limit.
\lim\limits_{(x, y)\rightarrow (1,2)}(x^{2}+xy-y^{2}+8)
7
\lim\limits_{(x, y)\rightarrow (-1, 3)}(x^{2}y+y^{2}-3xy-2)
\lim\limits_{(x, y,z)\rightarrow (1,-1,2)}(3x^{2}y+y^{2}z)
-1
\lim\limits_{(x, y,z)\rightarrow (0,1,-1)}(x^{2}-y^{2}z^{2})
\lim\limits_{(x, y)\rightarrow ( {\pi }/{2},\pi ) }(\sin x\cos y)
-1
\lim\limits_{(x, y)\rightarrow (2,e)}( x^{2}y\ln y)
\lim\limits_{(x, y)\rightarrow (1, 5)}\dfrac{4x-xy+4}{4y-y^{2}}
-\dfrac35
\lim\limits_{(x, y)\rightarrow (2, 2)}\dfrac{x^{2}+2xy+y^{2}-9}{x+y-3}
\lim\limits_{(x, y)\rightarrow (\pi , 0)}\dfrac{\cos x\cos y}{x}
-\dfrac1{\pi}
\lim\limits_{(x, y)\rightarrow (\pi ,\pi )}\dfrac{\cos y(1-\cos x)}{xy}
\lim\limits_{(x, y)\rightarrow (0, 0)}\dfrac{e^{x}-4}{e^{y}}
-3
\lim\limits_{(x, y)\rightarrow (0,\, 0)}\dfrac{e^{x}\cos y-\cos y}{e^{y}}
\lim\limits_{(x, y)\rightarrow (2, 1)}\dfrac{x^{2}+xy-6y^{2}}{x^{2}+4y^{2}}
0
\lim\limits_{(x, y)\rightarrow (0,-2)}\dfrac{y^{2}+xy+4y+e^{x}}{xy-y+2x-e^{x}}
\lim\limits_{(x, y)\rightarrow (2, 0)}\dfrac{x^{2}y+x}{x^{3}y+3xy^{2}-8}
-\dfrac{1}4
\lim\limits_{(x, y)\rightarrow (0, 1)}\dfrac{x^{3}-4x^{2}y+2}{xy+4}
In Problems 25–32, find each limit by approaching (0, 0) along:
Can you conclude anything?
\lim\limits_{(x, y)\rightarrow (0, 0)}\dfrac{3xy}{2x^{2}+y^{2}}
\lim\limits_{(x, y)\rightarrow (0, 0)} \dfrac{2xy}{x^{2}+3y^{2}}
\lim\limits_{(x, y) \rightarrow (0, 0)}\dfrac{xy^{2}}{x^{2}+y^{3}}
\lim\limits_{(x, y)\rightarrow (0, 0)}\dfrac{2x^{2}y}{3x^{3}+y^{2}}
\lim\limits_{(x, y)\rightarrow (0, 0)}\dfrac{3x^{2}y^{2}}{x^{4}+y^{4}}
\lim\limits_{(x, y)\rightarrow (0, 0)}\dfrac{x^{2}}{x^{2}+y^{2}}
\lim\limits_{(x, y)\rightarrow (0, 0)}\dfrac{x^{2}+xy}{x^{2}+y^{2}}
\lim\limits_{(x, y)\rightarrow (0, 0)}\dfrac{(x-y)^{2}}{x^{2}+y^{2}}
In Problems 33–36, show that the limit does not exist.
\lim\limits_{(x, y)\rightarrow (0, 0)}\dfrac{ 2x^{2}+y^{2}}{x^{2}+y^{2}}
See Student Solutions Manual.
\lim\limits_{(x, y) \rightarrow (0, 0)}\dfrac{2xy}{x^{2}+y^{2}}
\lim\limits_{(x, y)\rightarrow (0, 0)}\dfrac{x^{4}-y^{2}}{ x^{2}+y^{2}}
See Student Solutions Manual.
\lim\limits_{(x, y)\rightarrow (0, 0)}\dfrac{x^{2}+y^{4}}{x^{2}+y^{2}}
In Problems 37–48, determine where each function is continuous.
f(x,y) =3x^{2}y-4x^{2}y^{2}+10xy^{2}-9
This function is continuous for all points (x,y) in the plane.
f(x,y) =x^{3}+2x^{2}y+xy^{2}-4y^{3}
f(x,y) =\dfrac{x^{2}-y^{2}}{x-y}
This function is continuous for all points (x,y) in the plane except on the line y=x.
f(x,y) =\dfrac{2x^{2}y+xy^{2}}{1-xy}
f(x,y) =e^{x^{2}-y^{2}}
This function is continuous for all points (x,y) in the plane.
f(x,y) =\ln ( x^{2}+y^{2})
f(x,y) =\sin (x^{2}-y)
This function is continuous for all points (x,y) in the plane.
f(x,y) =\cos \sqrt{x^{2}-y}
f(x,y) =\sin (x+y)\cos (x-y)
This function is continuous for all points (x,y) in the plane.
f(x,y) =e^{x}\sin (xy)
f(x,y) =\dfrac{x+3xy^{2}}{e^{x^{2}-y^{2}}}
This function is continuous for all points (x,y) in the plane.
f(x,y) =\dfrac{x+3xy^{2}}{\ln (x^{2}+y^{2}) }
In Problems 49–58, find each limit.
\lim\limits_{(x, y)\rightarrow (1, 0)}\dfrac{x^{2}-y^{2}}{x-y}
1
\lim\limits_{(x, y)\rightarrow (0, 0)} \dfrac{2x^{2}y+xy^{2}}{1-xy}
\lim\limits_{(x, y)\rightarrow (1, 1)}e^{x^{2}-y^{2}}
1
\lim\limits_{(x, y) \rightarrow (0, e)}\ln (x^{2}+y^{2})
\lim\limits_{(x, y)\rightarrow ( {\pi }/{ 2}, \pi ) }[ \sin (x+y)\cos (x-y)]
0
\lim\limits_{(x, y)\rightarrow (0, \pi /{2})} e^{x}\sin (xy)
\lim\limits_{(x, y)\rightarrow (\pi , 0)}\dfrac{e^{x^{2}+y^{2}}\cos x^{2}}{\cos y^{2}}
e^{\pi^2}\cos \pi^2
829
\lim\limits_{(x, y)\rightarrow ( {\pi }/{2}, 4) }\dfrac{e^{x^{2}y}}{\cos ( 2x) }
\lim\limits_{(x, y)\rightarrow (0, 0)} \tan ^{-1}\left( \dfrac{e^{x+y}}{y^{2}+1}\right)
\dfrac{\pi}4
\lim\limits_{(x, y)\rightarrow (\pi, 0)} \tan ^{-1}[ \cos ( x+y) ]
Applications and Extensions
In Problems 59–62, find \lim\limits_{(x, y, z)\rightarrow (0, 0, 0)}\dfrac{2yz}{x^{4}+y^{2}+z^{2}} along the indicated curves.
the line x=t, y=t, z=t
1
the line x=2t, y=3t, z=4t
the curve x=t, y=t^{2}, z=t^{2}
\dfrac23
the line x=at, y=bt, z=ct, b^{2}+c^{2}>0
In Problems 63 and 64, use the \varepsilon-\delta definition of a limit to prove each limit statement.
\lim\limits_{(x, y)\rightarrow (0,\, 0)}\dfrac{x^{2}y}{x^{2}+y^{2}}=0
See Students Solutions Manual.
\lim\limits_{(x, y)\rightarrow (0,\, 0)}\dfrac{\sin ( x^{2}+y^{2})}{x^2+y^2}=1
In Problems 65–72,
f(x, y)=\dfrac{xy^{2}}{x^{2}+y^{2}}
f(x, y)=\dfrac{x^{2}y}{x^{2}+y^{2}}
f(x, y)=\dfrac{2x^{2}+y^{2}}{x^{2}+y^{2}}
f(x, y)=\dfrac{x^{4}-y^{2}}{x^{2}+y^{2}}
f(x,y)=\left\{ \begin{array}{@{}c@{\quad}c@{\quad}c} \dfrac{3xy}{x^{2}+y^{2}}~ & \hbox{if } & ~(x,y)\neq (0,0) \\[3pt] 0 & \hbox{if} & (x,y)=(0,0) \end{array} \right.
f(x,y)=\left\{ \begin{array}{@{}c@{\quad}c@{\quad}c} \dfrac{\sin ( xy) }{x^{2}+y^{2}} & \hbox{if } & (x,y)\neq (0,0) \\[3pt] 1 & \hbox{if} & (x,y)=(0,0) \end{array} \right.
f(x, y)=\left\{ \begin{array}{@{}c@{\quad}c@{\quad}c} \dfrac{\sin (x^{2}+y^{2})}{x^{2}+y^{2}} & \hbox{if} & (x, y)\neq (0, 0) \\[3pt] 1 & \hbox{if} & (x, y)=(0, 0) \end{array} \right.
f(x, y)=\left\{ \begin{array}{@{}c@{\quad}c@{\quad}c} \dfrac{\sin (x^{2}-y^{2})}{x^{2}+y^{2}} & \hbox{if} & (x, y)\neq (0, 0) \\[3pt] 1 & \hbox{if} & (x, y)=(0, 0) \end{array} \right.
Challenge Problems
In Problems 73–76, find each limit by converting to polar coordinates.
\lim\limits_{(x, y)\rightarrow (0, 0)}\dfrac{x^2y}{x^{2}+y^{2}}
0
\lim\limits_{(x, y)\rightarrow (0, 0)}\dfrac{xy^{2}}{x^{2}+y^{2}}
\lim\limits_{(x, y)\rightarrow (0, 0)}\dfrac{\cos (x^{2}+y^{2})}{x^{2}+y^{2}}
This limit does not exist.
\lim\limits_{(x, y)\rightarrow (0, 0)}\dfrac{\sin (x^{2}+y^{2})}{x^{2}+y^{2}}
Find \lim\limits_{(x,y) \rightarrow (0,0) }f(x,y) , if f(x,y) =\dfrac{ x^{3}-4x^{2}y+4xy^{2}+5x-10y}{x-2y}.
5