Chapter ReviewPrinted Page 139
1.1 Limits of Functions Using Numerical and Graphical Techniques
- Slope of a secant line: msec=f(x)−f(c)x−c (p. 70)
- Slope of a tangent line mtan=lim (p. 70)
- The limit L of a function y=f(x) as x approaches a number c does not depend on the value of f at c. (p. 74)
- The limit L of a function y=f( x) as x approaches a number c is unique. A function cannot have more than one limit as x approaches c. (p. 74)
- The limit L of a function y=f( x) as x approaches a number c exists if and only if both one-sided limits exist at c and both one-sided limits are equal. That is, \lim\limits_{x\rightarrow c}f( x) =L if and only if \lim\limits_{x\rightarrow c^{-}}f( x) =\lim\limits_{x\rightarrow c^{+}}f( x) =L. (p. 74)
1.2 Limits of Functions Using Properties of Limits
Basic Limits
- \lim\limits_{x\rightarrow c} A=A, A a constant (p. 81)
- \lim\limits_{x\rightarrow c}x=c (p. 81)
Properties of Limits If f and g are functions for which \lim\limits_{x\rightarrow c}f( x) and \lim\limits_{x\rightarrow c}g(x) both exist and if k is any real number, then:
- \lim\limits_{x\rightarrow c}[f(x)\pm g(x)]=\lim\limits_{x\rightarrow c}f(x)\pm \lim\limits_{x\rightarrow c}g(x) (p. 82)
- \lim\limits_{x\rightarrow c}[f(x)\cdot g(x)]=\lim\limits_{x\rightarrow c}f(x)\cdot \lim\limits_{x\rightarrow c}g(x) (p. 82)
- \lim\limits_{x\rightarrow c}[kg(x)]=k\lim\limits_{x\rightarrow c}\,g(x) (p. 83)
- \lim\limits_{x\rightarrow c}[f(x)]^{n}=\left[ \lim\limits_{\kern.5ptx\rightarrow c}f(x)\right] ^{n}, n\geq 2 is an integer (p. 84)
- \lim\limits_{x\rightarrow c}\sqrt[n]{f(x)}=\sqrt[n]{ \lim\limits_{x\rightarrow c}f(x)}, provided f(x)\ge 0 if n is even (p. 85)
- \lim\limits_{x\rightarrow c}[f(x)]^{m/n}=\left[ \lim\limits_{\kern.5ptx\rightarrow c}f(x)\right] ^{m/n}, provided [f( x)] ^{m/n} is defined for positive integers m and n (p. 85)
- \lim\limits_{x\rightarrow c}\left[ \dfrac{f(x)}{g(x)}\right] = \dfrac{\lim\limits_{x\rightarrow c}f(x)}{\lim\limits_{x\rightarrow c}g(x) }, provided \lim\limits_{x\rightarrow c}g(x)\neq 0 (p. 87)
- If P is a polynomial function, then \lim\limits_{x \rightarrow c}P(x)=P(c). (p. 86)
- If R is a rational function and if c is in the domain of R, then \lim\limits_{x\rightarrow c}R( x) =R( c). (p. 87)
Definitions
- Continuity at a number (p. 93)
- Removable discontinuity (p. 95)
- One-sided continuity at a number (p. 95)
- Continuity on an interval (p. 96)
- Continuity on a domain (p. 97)
Properties of Continuity
- A polynomial function is continuous on its domain. (p. 97)
- A rational function is continuous on its domain. (p. 97)
- If the functions f and g are continuous at a number c, and if k is a real number, then the functions f+g, f-g, f\cdot g and kf are also continuous at c. If g(c) ≠ 0, the function \dfrac{f}{g} is continuous at c. (p. 98)
- If a function g is continuous at c and a function f is continuous at g( c), then the composite function (f\circ g)(x)=f(g(x)) is continuous at c. (p. 99)
- If f is a one-to-one function that is continuous on its domain, then its inverse function f^{-1} is also continuous on its domain. (p. 100)
The Intermediate Value Theorem Let f be a function that is continuous on a closed interval [a,b] with f(a)\neq f(b). If N is any number between f(a) and f(b), then there is at least one number c in the open interval (a,b) for which f(c)=N. (p. 100)
1.4 Limits and Continuity of Trigonometric, Exponential, and Logarithmic Functions
Basic Limits
- \lim\limits_{\theta\rightarrow 0}\dfrac{\sin \theta }{\theta }=1 (p. 108)
- \lim\limits_{x\rightarrow c}\sin x=\sin c (p. 111)
- \lim\limits_{x\rightarrow c}\cos x=\cos c (p. 111)
- \lim\limits_{\theta \rightarrow 0}\dfrac{\cos \theta -1}{\theta }=0 (p. 111)
- \lim\limits_{x\rightarrow c}a^{x}=a^{c}; a>0, a\neq 1 (p. 114)
- \lim\limits_{x\rightarrow c}\log _{a}x=\log _{a}c; a>0, a\neq 1, and c>0 (p. 114)
Squeeze Theorem If the functions f, g, and h have the property that for all x in an open interval containing c, except possibly at c, f(x)\leq g(x)\leq h(x), and if \lim\limits_{x\rightarrow c}f(x)=\lim\limits_{x\rightarrow c}h(x)=L, then \lim\limits_{x\rightarrow c}g(x)=L. (p. 107)
Properties of Continuity
- The six trigonometric functions are continuous on their domains. (pp. 111-113)
- The six inverse trigonometric functions are continuous on their domains. (p. 113)
- An exponential function is continuous on its domain. (p. 114)
- A logarithmic function is continuous on its domain. (p. 114)
1.5 Infinite Limits; Limits at Infinity; Asymptotes
Basic Limits
- \lim\limits_{x\rightarrow 0^{-}}\dfrac{1}{x}=-\infty; \lim\limits_{x\rightarrow 0^{+}}\dfrac{1}{x}=\infty (p. 118)
- \lim\limits_{x\rightarrow \infty }\dfrac{1}{x}=0; \lim\limits_{x\rightarrow -\infty }\dfrac{1}{x}=0 (p. 120)
- \lim\limits_{x\rightarrow 0}\dfrac{1}{x^{2}}=\infty (p. 117)
- \lim\limits_{x\rightarrow 0^{+}}\ln x=-\infty (p. 118)
- \lim\limits_{x\rightarrow \infty}\ln x=\infty (p. 124)
- \lim\limits_{x\rightarrow -\infty }e^{x}=0; \lim\limits_{x\rightarrow \infty }e^{x}=\infty (p. 124)
Definitions
Properties of Limits at Infinity (p. 120): If k is a real number, n\geq 2 is an integer, and the functions f and g approach real numbers as x\rightarrow \infty, then:
- \lim\limits_{x\rightarrow \infty } A=A, where A is a number
- \lim\limits_{x\rightarrow \infty } [kf(x)]=k\lim\limits_{x\rightarrow \infty }f(x)
- \lim\limits_{x\rightarrow \infty }[f(x)\pm g(x)]=\lim\limits_{x\rightarrow \infty }f(x)\pm \lim\limits_{x\rightarrow \infty }g(x)
- \lim\limits_{x\rightarrow \infty }[f(x)g(x)]=\left[ \lim\limits_{\kern.5ptx\rightarrow \infty }f(x)\right] \left[\lim\limits_{x\rightarrow \infty }g(x)\right]
- \lim\limits_{x\rightarrow \infty }\dfrac{f(x)}{g(x)}=\dfrac{\lim\limits_{x\rightarrow \infty }f(x)}{\lim\limits_{x\rightarrow \infty}g(x)} if \lim\limits_{x\rightarrow \infty }g(x)\neq 0
- \lim\limits_{x\rightarrow \infty }[f(x)]^{n}=\left[\lim\limits_{x\rightarrow \infty }f(x)\right] ^{n}
- \lim\limits_{x\rightarrow \infty }\sqrt[n]{f(x)}=\sqrt[n]{\lim\limits_{x\rightarrow \infty }f(x)}, where f(x)\geq 0 if n is even
1.6 The \epsilon-\delta Definition of a Limit
Definitions
Properties of limits
- If \lim\limits_{x\rightarrow c}f(x)\gt0, then there is an open interval around c, for which f(x)\gt0 everywhere in the interval, except possibly at c. (p. 136)
- If \lim\limits_{x\rightarrow c}f(x)\lt0, then there is an open interval around c, for which f(x)\lt0 everywhere in the interval, except possibly at c. (p. 136)
Section |
You should be able to\ldots |
Example |
Review Exercises |
1.1 |
1 Discuss the slope of a tangent line to a graph (p. 69) |
|
4 |
|
2 Investigate a limit using a table of numbers (p. 71) |
1-3 |
1 |
|
3 Investigate a limit using a graph (p. 73) |
4-7 |
2, 3 |
1.2 |
1 Find the limit of a sum, a difference, and a product (p. 82) |
1-6 |
8, 10, 12, 14, 22, 26, 29, 30, 47, 48 |
|
2 Find the limit of a power and the limit of a root (p. 84) |
7-9 |
11, 18, 28, 55 |
|
3 Find the limit of a polynomial (p. 86) |
10 |
10, 22 |
|
4 Find the limit of a quotient (p. 87) |
11-14 |
13-17, 19-21, 23-25, 27, 56 |
|
5 Find the limit of an average rate of change (p. 89) |
15 |
37 |
|
6 Find the limit of a difference quotient (p. 89) |
16 |
5, 6, 49 |
1.3 |
1 Determine whether a function is continuous at a number (p. 93) |
1-4 |
31-36 |
|
2 Determine intervals on which a function is continuous (p. 98) |
5, 6 |
39-42 |
|
3 Use properties of continuity (p. 98) |
7, 8 |
39-42 |
|
4 Use the Intermediate Value Theorem (p. 100) |
9, 10 |
38, 44-46 |
1.4 |
1 Use the Squeeze Theorem to find a limit (p. 107) |
1 |
7, 69 |
|
2 Find limits involving trigonometric functions (p. 108) |
2, 3 |
9, 51-55 |
|
3 Determine where the trigonometric functions are continuous (p. 111) |
4, 5 |
63-65 |
|
4 Determine where an exponential or a logarithmic function is continuous (p. 113) |
6 |
43 |
1.5 |
1 Investigate infinite limits (p. 117) |
1 |
57, 58 |
|
2 Find the vertical asymptotes of a function (p. 119) |
2 |
61, 62 |
|
3 Investigate limits at infinity (p. 120) |
3-8 |
59, 60 |
|
4 Find the horizontal asymptotes of a function (p. 125) |
9 |
61, 62 |
|
5 Find the asymptotes of a rational function using limits (p. 126) |
10 |
67, 68 |
1.6 |
1 Use the \epsilon- \delta definition of a limit (p. 132) |
1-7 |
50, 66 |