Processing math: 2%

8.5 Assess Your Understanding

Printed Page 588

Concepts and Vocabulary

  1. True or False The series k=1(1)kcos(kπ) is an alternating series.

False

  1. True or Falsek=1[1+(1)k] is an alternating series.

False

  1. True or False In an alternating series, k=1(1)kak, if lim then the series is convergent.

False

589

  1. True or False If the alternating series \sum\limits_{k\,=\,1}^{\infty }(-1)^{k+1}\,a_{k} satisfies the two conditions of the Alternating Series Test, then the error E_{n} in using the sum S_{n} of the first n terms as an approximation of the sum S of the series is \vert E_{n}\vert \leq a_{n}.

False

  1. True or False A series that is not absolutely convergent is divergent.

False

  1. True or False If a series is absolutely convergent, then the series converges.

True

Skill Building

In Problems 7–18, use the Alternating Series Test to determine whether each alternating series converges or diverges.

  1. \sum\limits_{k\,=\,1}^{\infty }(-1)^{k+1}\dfrac{1}{k^{2}}

Converges

  1. \sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{1}{2\sqrt{k}}

  1. \sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{k}{2k+1}

Diverges

  1. \sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{k+1}{k}

  1. \sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{k^{2}}{5k^{2}+2}

Diverges

  1. \sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{k+1}{k^{2}}

  1. \sum\limits_{k\,=\,1}^{\infty }\dfrac{(-1)^{k+1}}{(k+1)2^{k}}

Converges

  1. \sum\limits_{k\,=\,2}^{\infty}(-1)^{k}\dfrac{1}{k\,\ln k}

  1. \sum\limits_{k\,=\,2}^{\infty}(-1)^{k}\dfrac{1}{1+2^{-k}}

Diverges

  1. \sum\limits_{k\,=\,0}^{\infty}(-1)^{k}\dfrac{1}{k!}

  1. \sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\left(\dfrac{k}{k+1}\right)^{k}

Diverges

  1. \sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{k^{2}}{(k+1) ^{3}}

In Problems 19–26, approximate the sum of each series using the first three terms and find an upper estimate to the error in using this approximation.

  1. \sum\limits_{k\,=\,1}^{\infty }(-1)^{k+1}\dfrac{1}{k^{2}}

0.8611; upper estimate to the error is 0.0625

  1. \sum\limits_{k\,=\,0}^{\infty}(-1)^{k}\dfrac{1}{k!}

  1. \sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{1}{k^{4}}

0.9498; upper estimate to the error is 0.0039

  1. \sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\left(\dfrac{1}{\sqrt{k}}\right)^{k}

  1. \sum\limits_{k\,=\,0}^{\infty}(-1)^{k}\dfrac{1}{k!}\left( \dfrac{1}{3}\right) ^{k}

0.7222; upper estimate to the error is 0.00617

  1. \sum\limits_{k\,=\,0}^{\infty}(-1)^{k}\dfrac{1}{k!}\left( \dfrac{1}{2}\right) ^{k}

  1. \sum\limits_{k\,=\,0}^{\infty}(-1)^{k}\dfrac{1}{2k+1}\left( \dfrac{1}{3}\right) ^{2k+1}

0.3218; upper estimate to the error is 6.53 × 10-5

  1. \sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{1}{k^{k}}

In Problems 27–42, determine whether each series is absolutely convergent, conditionally convergent, or divergent.

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{2k}

Conditionally convergent

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{3k-4}

  1. \sum\limits_{k\,=\,1}^{\infty }(-1)^{k+1}\dfrac{\sin k}{k^{2}+1}

Absolutely convergent

  1. \sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{\cos k}{k^{2}}

  1. \sum\limits_{k\,=\,1}^{\infty }(-1)^{k+1}\left(\dfrac{1}{5}\right)^{k}

Absolutely convergent

  1. \sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{5^{k}}{k!}

  1. \sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{e^{k}}{k}

Diverges

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}\,2^{k}}{k^{2}}

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{k(k+1)}

Absolutely convergent

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{k\sqrt{k+3}}

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}\sqrt{k}}{k^{2}+1}

Absolutely convergent

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}\sqrt{k}}{k+1}

  1. \sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}~\dfrac{\ln k}{k}

Conditionally convergent

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}\ln k}{k^{3}}

  1. \sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{1}{k\,e^{k}}

Absolutely convergent

  1. \sum\limits_{k\,=\,1}^{\infty }\dfrac{(-1)^{k+1}}{e^{k}}

Applications and Extensions

In Problems 43–50, determine whether each series is absolutely convergent, conditionally convergent, or divergent.

  1. \sum\limits_{k\,=\,2}^{\infty}\dfrac{(-1)^{k}}{k\,\ln k}

Conditionally convergent

  1. \sum\limits_{k\,=\,2}^{\infty}\dfrac{(-1)^{k}}{k\,(\ln k) ^{2}}

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{\sin k }{k^{2}}

Absolutely convergent

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}\tan ^{-1}k}{k}

  1. \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{k^{1/k}}

Diverges

  1. \sum\limits_{k\,=\,1}^{\infty }(-1) ^{k+1}\left( \dfrac{k}{k+1}\right) ^{k}

  1. 1-\dfrac{1}{2!}+\dfrac{1}{3!}-\dfrac{1}{4!}+\dfrac{1}{5!}-\cdots

Absolutely convergent

  1. 1-\dfrac{1}{3^{2}}+\dfrac{1}{5^{2}}-\dfrac{1}{7^{2}}+\cdots

  1. Show that the positive terms of \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{k} diverge.

See Student Solutions Manual.

  1. Show that the negative terms of \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{k} diverge.

  1. Show that the terms of the series \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{k} can be rearranged so the resulting series converges to 0.

See Student Solutions Manual.

  1. Show that the terms of the series \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{k} can be rearranged so the resulting series converges to 2.

  1. Show that the terms of the series \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{k} can be rearranged so the resulting series diverges.

See Student Solutions Manual.

  1. Show that the series e^{-x}\cos x+e^{-2x}\cos (2x) +e^{-3x}\cos (3x)+\cdots

    is absolutely convergent for all positive values of x. (Hint: Use the fact that \vert \cos \theta \vert \leq 1.)

  1. Determine whether the series below converges (absolutely or conditionally) or diverges. 1+r\cos \theta +r^{2}\cos\! \left( 2\theta \right) +r^{3}\cos (3\theta) +\cdots

Absolutely convergent for |r| < 1; divergent if |r| \geq 1.

  1. What is wrong with the following argument? \begin{eqnarray*} A &=& 1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{7}-\dfrac{1}{8}+\cdots \\[3pt] \left(\dfrac{1}{2}\right) A &=& \dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{6}-\dfrac{1}{8}+\cdots \end{eqnarray*} So, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ A+\left(\dfrac{1}{2}\right) A = 1+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{4}+\cdots

    590

    The series on the right is a rearrangement of the terms of the series A. So its sum is A, meaning \begin{array}{l} A + \left( {\frac{1}{2}} \right)A &=& A \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, A &=& 0 \\ \end{array}

    But, A = \left( {1 - \frac{1}{2}} \right) + \left( {\frac{1}{3} - \frac{1}{4}} \right) + \left( {\frac{1}{5} - \frac{1}{6}} \right) + \cdots > 0

    Bernoulli’s ErrorIn Problems 59–61, consider an incorrect argument given by Jakob Bernoulli to prove that \sum\limits_{k = 1}^\infty {\frac{1}{{k(k + 1)}} = \frac{1}{2} + \frac{1}{6} + \frac{1}{{12}} + \cdots = 1}

    Bernoulli’s argument went as follows: Let \,N = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots ., Then N - 1 =\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots .

    Now, subtract term-by-term to get \begin{array}{l} N - (N - 1) = \left( {1 - \frac{1}{2}} \right) + \left( {\frac{1}{2} - \frac{1}{3}} \right) + \left( {\frac{1}{3} - \frac{1}{4}} \right) + \cdots \,\,\,\,\,(4) \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 = \frac{1}{2} + \frac{1}{6} + \frac{1}{{12}} + \cdots \\ \end{array}

  1. What is wrong with Bernoulli’s argument?

See Student Solutions Manual.

  1. In general, what can be said about the convergence or divergence of a series formed by taking the term-by-term difference (or sum) of two divergent series? Support your answer with examples.

  1. Although the method is wrong. Bernoulli’s conclusion is correct; that is, it is true that \sum\limits_{k=1}^{\infty }\dfrac{1}{k(k+1) }=1. Prove it! [Hint: Look at the partial sums using the form of the series in (4).]

See Student Solutions Manual.

  1. Show that if two series \sum\limits_{k\,=\,1}^{\infty }a_{k} and \sum\limits_{k\,=\,1}^{\infty }b_{k} are absolutely convergent, the series \sum\limits_{k\,=\,1}^{\infty }(a_{k}+b_{k}) is also absolutely convergent. Moreover, \sum\limits_{k\,=\,1}^{\infty}\,(a_{k}+b_{k})=\sum\limits_{k\,=\,1}^{\infty}a_{k}+\sum\limits_{k\,=\,1}^{\infty }b_{k}.

  1. Show that if a series converges absolutely, then the series consisting of just the positive terms converges, as does the series consisting of just the negative terms.

See Student Solutions Manual.

  1. Show that if a series converges conditionally, then the series consisting of just the positive terms diverges, as does the series consisting of just the negative terms.

  1. Determine whether the series \sum\limits_{k=1}^{\infty }c_{k}, where \,\,{c_k} = \left\{ \begin{array}{l} \frac{1}{{{a^k}}}\,\,\,\,\qquad{\rm{if}}\,k\,{\rm{is}}\,{\rm{even}} \\ - \frac{1}{{{b^k}}}\qquad{\rm{if}}\,k\,{\rm{is}}\,{\rm{odd}} \\ \end{array} \right.a > 1,\,b > 1,

    converges absolutely, converges conditionally, or diverges.

Absolutely convergent

  1. Prove that if a series \sum\limits_{k\,=\,1}^{\infty }a_{k} is absolutely convergent, any rearrangement of its terms results in a series that is also absolutely convergent. (Hint: Use the triangle inequality: \left\vert a+b\right\vert \leq \vert a \vert+\left\vert b\right\vert.)

  1. Suppose that the terms of the series \sum\limits_{k\,=\,1}^{\infty }a_{k} are alternating, \vert a_{k+1}\vert \leq \left\vert a_{k}\right\vert for all integers k, and \lim\limits_{n\rightarrow \infty }a_{n}=0. Show that the series converges.

See Student Solutions Manual.

Challenge Problems

In Problems 68–71, determine whether each series is absolutely convergent, conditionally convergent, or divergent.

  1. \sum\limits_{k=1}^{\infty }\sin \dfrac{(-1)^{k}}{k}

  1. \sum\limits_{k=2}^{\infty }\dfrac{(-1)^{k}}{\sqrt[p]{k^{3}+1}},~p>2

Absolutely convergent if 2 < p < 3; divergent if p \geq 3.

  1. \sum\limits_{k=2}^{\infty }(-1)^{k}k^{(1-k)/k}

  1. \sum\limits_{k=2}^{\infty }\dfrac{(-1)^{k}}{(\ln k) ^{\ln k}}

Absolutely convergent

In Problems 72–74, use the result of Problem 67 to determine whether each series converges or diverges.

  1. \sum\limits_{k\,=\,1}^{\infty}(-1) ^{k+1}\dfrac{\sqrt{k}}{(k+1) }

  1. \sum\limits_{k\,=\,1}^{\infty}(-1) ^{k+1}\dfrac{k}{(k+1) ^{2}}

Converges

  1. \sum\limits_{k\,=\,2}^{\infty}(-1) ^{k}\ln \dfrac{k+1}{k}

  1. Let \{a_{n}\} be a sequence that is decreasing and is bounded from below by 0. Define R_{n}=\sum_{k=n+1}^{\infty }(-1)^{k+1}a_{k} \qquad \hbox{and}\qquad \Delta a_{k}=a_{k}-a_{k+1}

    Suppose that the sequence \left\{ \Delta a_{k}\right\} decreases.

    1. (a) Show that the series \sum\limits_{k\,=\,1}^{\infty }(-1)^{k+1}~\Delta a_{k} is a convergent alternating series.
    2. (b) Show that \left\vert R_{n}\right\vert =\frac{a_{n}}{2}+\frac{1}{2}\sum_{k\,=\,1}^{\infty }(-1)^{k}~\Delta \,a_{k+n-1} and \sum\limits_{k\,=\,1}^{\infty }(-1)^{k}~\Delta \,a_{k+n-1}<0. Deduce \left\vert R_{n}\right\vert <\dfrac{1}{2}\,a_{n}.
    3. (c) Show that \left\vert R_{n}\right\vert =\frac{a_{n+1}}{2}+\frac{1}{2} \sum_{k\,=\,1}^{\infty }(-1)^{k+1}~\Delta \,a_{k+n}
    4. (d) Conclude that \dfrac{a_{n+1}}{2}<\left\vert R_{n}\right\vert.

See Student Solutions Manual.

Source: Based on R. Johnsonbaugh, Summing an alternating series, American Mathematical Monthly, Vol. 86, No. 8 (Oct. 1979), pp. 637-648.