Printed Page 588
Concepts and Vocabulary
True or False The series ∞∑k=1(−1)kcos(kπ) is an alternating series.
False
True or False ∞∑k=1[1+(−1)k] is an alternating series.
False
True or False In an alternating series, ∞∑k=1(−1)kak, if lim then the series is convergent.
False
589
True or False If the alternating series \sum\limits_{k\,=\,1}^{\infty }(-1)^{k+1}\,a_{k} satisfies the two conditions of the Alternating Series Test, then the error E_{n} in using the sum S_{n} of the first n terms as an approximation of the sum S of the series is \vert E_{n}\vert \leq a_{n}.
False
True or False A series that is not absolutely convergent is divergent.
False
True or False If a series is absolutely convergent, then the series converges.
True
Skill Building
In Problems 7–18, use the Alternating Series Test to determine whether each alternating series converges or diverges.
\sum\limits_{k\,=\,1}^{\infty }(-1)^{k+1}\dfrac{1}{k^{2}}
Converges
\sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{1}{2\sqrt{k}}
\sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{k}{2k+1}
Diverges
\sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{k+1}{k}
\sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{k^{2}}{5k^{2}+2}
Diverges
\sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{k+1}{k^{2}}
\sum\limits_{k\,=\,1}^{\infty }\dfrac{(-1)^{k+1}}{(k+1)2^{k}}
Converges
\sum\limits_{k\,=\,2}^{\infty}(-1)^{k}\dfrac{1}{k\,\ln k}
\sum\limits_{k\,=\,2}^{\infty}(-1)^{k}\dfrac{1}{1+2^{-k}}
Diverges
\sum\limits_{k\,=\,0}^{\infty}(-1)^{k}\dfrac{1}{k!}
\sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\left(\dfrac{k}{k+1}\right)^{k}
Diverges
\sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{k^{2}}{(k+1) ^{3}}
In Problems 19–26, approximate the sum of each series using the first three terms and find an upper estimate to the error in using this approximation.
\sum\limits_{k\,=\,1}^{\infty }(-1)^{k+1}\dfrac{1}{k^{2}}
0.8611; upper estimate to the error is 0.0625
\sum\limits_{k\,=\,0}^{\infty}(-1)^{k}\dfrac{1}{k!}
\sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{1}{k^{4}}
0.9498; upper estimate to the error is 0.0039
\sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\left(\dfrac{1}{\sqrt{k}}\right)^{k}
\sum\limits_{k\,=\,0}^{\infty}(-1)^{k}\dfrac{1}{k!}\left( \dfrac{1}{3}\right) ^{k}
0.7222; upper estimate to the error is 0.00617
\sum\limits_{k\,=\,0}^{\infty}(-1)^{k}\dfrac{1}{k!}\left( \dfrac{1}{2}\right) ^{k}
\sum\limits_{k\,=\,0}^{\infty}(-1)^{k}\dfrac{1}{2k+1}\left( \dfrac{1}{3}\right) ^{2k+1}
0.3218; upper estimate to the error is 6.53 × 10-5
\sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{1}{k^{k}}
In Problems 27–42, determine whether each series is absolutely convergent, conditionally convergent, or divergent.
\sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{2k}
Conditionally convergent
\sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{3k-4}
\sum\limits_{k\,=\,1}^{\infty }(-1)^{k+1}\dfrac{\sin k}{k^{2}+1}
Absolutely convergent
\sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{\cos k}{k^{2}}
\sum\limits_{k\,=\,1}^{\infty }(-1)^{k+1}\left(\dfrac{1}{5}\right)^{k}
Absolutely convergent
\sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{5^{k}}{k!}
\sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{e^{k}}{k}
Diverges
\sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}\,2^{k}}{k^{2}}
\sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{k(k+1)}
Absolutely convergent
\sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{k\sqrt{k+3}}
\sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}\sqrt{k}}{k^{2}+1}
Absolutely convergent
\sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}\sqrt{k}}{k+1}
\sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}~\dfrac{\ln k}{k}
Conditionally convergent
\sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}\ln k}{k^{3}}
\sum\limits_{k\,=\,1}^{\infty}(-1)^{k+1}\dfrac{1}{k\,e^{k}}
Absolutely convergent
\sum\limits_{k\,=\,1}^{\infty }\dfrac{(-1)^{k+1}}{e^{k}}
Applications and Extensions
In Problems 43–50, determine whether each series is absolutely convergent, conditionally convergent, or divergent.
\sum\limits_{k\,=\,2}^{\infty}\dfrac{(-1)^{k}}{k\,\ln k}
Conditionally convergent
\sum\limits_{k\,=\,2}^{\infty}\dfrac{(-1)^{k}}{k\,(\ln k) ^{2}}
\sum\limits_{k\,=\,1}^{\infty}\dfrac{\sin k }{k^{2}}
Absolutely convergent
\sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}\tan ^{-1}k}{k}
\sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{k^{1/k}}
Diverges
\sum\limits_{k\,=\,1}^{\infty }(-1) ^{k+1}\left( \dfrac{k}{k+1}\right) ^{k}
1-\dfrac{1}{2!}+\dfrac{1}{3!}-\dfrac{1}{4!}+\dfrac{1}{5!}-\cdots
Absolutely convergent
1-\dfrac{1}{3^{2}}+\dfrac{1}{5^{2}}-\dfrac{1}{7^{2}}+\cdots
Show that the positive terms of \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{k} diverge.
See Student Solutions Manual.
Show that the negative terms of \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{k} diverge.
Show that the terms of the series \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{k} can be rearranged so the resulting series converges to 0.
See Student Solutions Manual.
Show that the terms of the series \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{k} can be rearranged so the resulting series converges to 2.
Show that the terms of the series \sum\limits_{k\,=\,1}^{\infty}\dfrac{(-1)^{k+1}}{k} can be rearranged so the resulting series diverges.
See Student Solutions Manual.
Show that the series e^{-x}\cos x+e^{-2x}\cos (2x) +e^{-3x}\cos (3x)+\cdots
is absolutely convergent for all positive values of x. (Hint: Use the fact that \vert \cos \theta \vert \leq 1.)
Determine whether the series below converges (absolutely or conditionally) or diverges. 1+r\cos \theta +r^{2}\cos\! \left( 2\theta \right) +r^{3}\cos (3\theta) +\cdots
Absolutely convergent for |r| < 1; divergent if |r| \geq 1.
What is wrong with the following argument? \begin{eqnarray*} A &=& 1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{7}-\dfrac{1}{8}+\cdots \\[3pt] \left(\dfrac{1}{2}\right) A &=& \dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{6}-\dfrac{1}{8}+\cdots \end{eqnarray*} So, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ A+\left(\dfrac{1}{2}\right) A = 1+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{4}+\cdots
590
The series on the right is a rearrangement of the terms of the series A. So its sum is A, meaning \begin{array}{l} A + \left( {\frac{1}{2}} \right)A &=& A \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, A &=& 0 \\ \end{array}
But, A = \left( {1 - \frac{1}{2}} \right) + \left( {\frac{1}{3} - \frac{1}{4}} \right) + \left( {\frac{1}{5} - \frac{1}{6}} \right) + \cdots > 0
Bernoulli’s Error In Problems 59–61, consider an incorrect argument given by Jakob Bernoulli to prove that \sum\limits_{k = 1}^\infty {\frac{1}{{k(k + 1)}} = \frac{1}{2} + \frac{1}{6} + \frac{1}{{12}} + \cdots = 1}
Bernoulli’s argument went as follows: Let \,N = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots ., Then N - 1 =\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots .
Now, subtract term-by-term to get \begin{array}{l} N - (N - 1) = \left( {1 - \frac{1}{2}} \right) + \left( {\frac{1}{2} - \frac{1}{3}} \right) + \left( {\frac{1}{3} - \frac{1}{4}} \right) + \cdots \,\,\,\,\,(4) \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1 = \frac{1}{2} + \frac{1}{6} + \frac{1}{{12}} + \cdots \\ \end{array}
What is wrong with Bernoulli’s argument?
See Student Solutions Manual.
In general, what can be said about the convergence or divergence of a series formed by taking the term-by-term difference (or sum) of two divergent series? Support your answer with examples.
Although the method is wrong. Bernoulli’s conclusion is correct; that is, it is true that \sum\limits_{k=1}^{\infty }\dfrac{1}{k(k+1) }=1. Prove it! [Hint: Look at the partial sums using the form of the series in (4).]
See Student Solutions Manual.
Show that if two series \sum\limits_{k\,=\,1}^{\infty }a_{k} and \sum\limits_{k\,=\,1}^{\infty }b_{k} are absolutely convergent, the series \sum\limits_{k\,=\,1}^{\infty }(a_{k}+b_{k}) is also absolutely convergent. Moreover, \sum\limits_{k\,=\,1}^{\infty}\,(a_{k}+b_{k})=\sum\limits_{k\,=\,1}^{\infty}a_{k}+\sum\limits_{k\,=\,1}^{\infty }b_{k}.
Show that if a series converges absolutely, then the series consisting of just the positive terms converges, as does the series consisting of just the negative terms.
See Student Solutions Manual.
Show that if a series converges conditionally, then the series consisting of just the positive terms diverges, as does the series consisting of just the negative terms.
Determine whether the series \sum\limits_{k=1}^{\infty }c_{k}, where \,\,{c_k} = \left\{ \begin{array}{l} \frac{1}{{{a^k}}}\,\,\,\,\qquad{\rm{if}}\,k\,{\rm{is}}\,{\rm{even}} \\ - \frac{1}{{{b^k}}}\qquad{\rm{if}}\,k\,{\rm{is}}\,{\rm{odd}} \\ \end{array} \right.a > 1,\,b > 1,
converges absolutely, converges conditionally, or diverges.
Absolutely convergent
Prove that if a series \sum\limits_{k\,=\,1}^{\infty }a_{k} is absolutely convergent, any rearrangement of its terms results in a series that is also absolutely convergent. (Hint: Use the triangle inequality: \left\vert a+b\right\vert \leq \vert a \vert+\left\vert b\right\vert.)
Suppose that the terms of the series \sum\limits_{k\,=\,1}^{\infty }a_{k} are alternating, \vert a_{k+1}\vert \leq \left\vert a_{k}\right\vert for all integers k, and \lim\limits_{n\rightarrow \infty }a_{n}=0. Show that the series converges.
See Student Solutions Manual.
Challenge Problems
In Problems 68–71, determine whether each series is absolutely convergent, conditionally convergent, or divergent.
\sum\limits_{k=1}^{\infty }\sin \dfrac{(-1)^{k}}{k}
\sum\limits_{k=2}^{\infty }\dfrac{(-1)^{k}}{\sqrt[p]{k^{3}+1}},~p>2
Absolutely convergent if 2 < p < 3; divergent if p \geq 3.
\sum\limits_{k=2}^{\infty }(-1)^{k}k^{(1-k)/k}
\sum\limits_{k=2}^{\infty }\dfrac{(-1)^{k}}{(\ln k) ^{\ln k}}
Absolutely convergent
In Problems 72–74, use the result of Problem 67 to determine whether each series converges or diverges.
\sum\limits_{k\,=\,1}^{\infty}(-1) ^{k+1}\dfrac{\sqrt{k}}{(k+1) }
\sum\limits_{k\,=\,1}^{\infty}(-1) ^{k+1}\dfrac{k}{(k+1) ^{2}}
Converges
\sum\limits_{k\,=\,2}^{\infty}(-1) ^{k}\ln \dfrac{k+1}{k}
Let \{a_{n}\} be a sequence that is decreasing and is bounded from below by 0. Define R_{n}=\sum_{k=n+1}^{\infty }(-1)^{k+1}a_{k} \qquad \hbox{and}\qquad \Delta a_{k}=a_{k}-a_{k+1}
Suppose that the sequence \left\{ \Delta a_{k}\right\} decreases.
See Student Solutions Manual.
Source: Based on R. Johnsonbaugh, Summing an alternating series, American Mathematical Monthly, Vol. 86, No. 8 (Oct. 1979), pp. 637-648.