Processing math: 40%

8.9 Assess Your Understanding

Printed Page 622

622

Concepts and Vocabulary

  1. The series representation of a function f given by the power series f(x)=f(c)+f(c)(xc)+f(c)(xc)22!++ f(n)(c)(xc)nn!+ is called a(n)______________ ______________ about c.

Taylor series

  1. If c=0 in the Taylor expansion of a function f, then the expansion is called a(n) ______________ expansion.

Maclaurin

Skill Building

In Problems 3–14, assuming each function can be represented by a power series, find the Maclaurin expansion of each function.

  1. f(x)=ln(1x)

f(x)=k=1xkk

  1. f(x)=ln(1+x)

  1. f(x)=11x

f(x)=k=0xk

  1. f(x)=113x

  1. f(x)=1(1+x)2

f(x)=k=0(1)k(k+1)xk

  1. f(x)=(1+x)3

  1. f(x)=11+x2

f(x)=k=0(1)kx2k

  1. f(x)=11+2x3

  1. f(x)=e3x

f(x)=k=0xk3kk!

  1. f(x)=ex/2

  1. f(x)=sin(πx)

f(x)=k=0(1)kπ2k+1x2k+1(2k+1)!

  1. f(x)=cos(2x)

In Problems 15–22, assuming each function can be represented by a power series, find the Taylor expansion of each function about the given number c.

  1. f(x)=ex;c=1

f(x)=k=0e(x1)kk!

  1. f(x)=e2x;c=1

  1. f(x)=lnx;c=1

f(x)=k=1(1)k+1(x1)kk

  1. f(x)=x;c=1

  1. f(x)=1x;c=1

f(x)=k=0(1)k(x1)k

  1. f(x)=1x;c=4

  1. f(x)=sinx;c=π6

f(x)=k=0sin(16(π+3kπ))(xπ6)kk!

  1. f(x)=cosx;c=π2

In Problems 23–26, assuming each function can be represented by a power series, find the Taylor expansion of each function about the given number c. Comment on the result.

  1. f(x)=3x3+2x2+5x6;c=0

f(x)=6+5x+2x2+3x3

  1. f(x)=4x42x3x;c=0

  1. f(x)=3x3+2x2+5x6;c=1

f(x)=4+18(x1)+11(x1)2+3(x1)3

  1. f(x)=4x42x3+x;c=1

In Problems 27 and 28, find the Maclaurin expansion for each function.

  1. f(x)=sinhx

f(x)=k=0x2k+1(2k+1)!

  1. f(x)=ex2

In Problems 29–32, use properties of power series to find the first five nonzero terms of the Maclaurin expansion.

  1. f(x)=xex

x+x2+x32+x46+x524

  1. f(x)=xex

  1. f(x)=exsinx

xx2+x33x530+x690

  1. f(x)=excosx

In Problems 33 and 34, use a Maclaurin series for f to obtain the first four nonzero terms of the Maclaurin expansion for g.

  1. f(x)=11x2;g(x)=sin1x

x+x36+3x540+5x7112

  1. f(x)=tanx;g(x)=ln(cosx)

In Problems 35–42, use a binomial series to represent each function, and find the interval of convergence.

  1. f(x)=1+x2

\sum\limits_{k=0}^{\infty}{{1/2}\choose {k}}x^{2k}=1+\dfrac{x^{2}}{2}-\dfrac{x^{4}}{8} +\dfrac{x^{6}}{16}+\ldots; interval: [-1, 1]

  1. f(x)=\frac{1}{\sqrt{1-x}}

  1. f(x)=(1+x)^{1/5}

\sum\limits_{k=0}^{\infty}{{1/5}\choose {k}}x^k=1+\dfrac{x}{5}-\dfrac{2x^{2}}{25} +\dfrac{6x^{3}}{125}+\ldots; interval: [-1, 1]

  1. f(x)=(1-x) ^{5/3}

  1. f(x)=\frac{1}{(1+x^{2}) ^{1/2}}

\sum\limits_{k=0}^{\infty}{{-1/2}\choose {k}}x^{2k}=1-\dfrac{x^{2}}{2}+\dfrac{3x^{4}}{8} -\dfrac{5x^{6}}{16}+\ldots; interval: (-1, 1]

  1. f(x)=\frac{1}{(1+x)^{3/4}}

  1. f(x)= \frac{2x}{\sqrt{1-x}}

\sum\limits_{k=1}^{\infty}2{{-1/2}\choose {k}}(-1)^{k}x^{k+1}=2x+x^{2} +\dfrac{3}{4}x^{3}+\dfrac{5}{8}x^{4}+\ldots; interval: (-1, 1]

  1. f(x)=\frac{x}{1+x ^{3}}

Applications and Extensions

  1. Find the Maclaurin expansion for f(x) =\sin ^{2}x.

  1. Find the Maclaurin expansion for f(x) =\cos ^{2}x.

  1. Obtain the Maclaurin expansion of \cos x by integrating the Maclaurin series for \sin x.

\cos x = \sum\limits_{k=0}^{\infty}{\dfrac{(-1)^{k}x^{2k}}{(2k)!}}

  1. Find the Maclaurin expansion for f(x) =\ln \frac{1}{1-x}. Compare the result to the power series representation of f(x) =\ln \frac{1}{1-x} found in Section 8.8, Example 8, page 607.

  1. Find the first five nonzero terms of the Maclaurin expansion for f(x) =\sec x.

\sec{x}= 1+\dfrac{x^{2}}{2}+\dfrac{5x^{4}}{24}+\dfrac{61x^{6}}{720} +\dfrac{277x^{8}}{8064} + \ldots

  1. Probability The standard normal distribution p(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2\!/2} is important in probability and statistics. If a random variable Z has a standard normal distribution, then the probability that an observation of Z is between Z=a and Z=b is given by P(a\leq Z\leq b) =\frac{1}{\sqrt{2\pi}}\, \int_{a}^{b} e^{-x^2\!/2}\, dx

    1. (a) Find the Maclaurin expansion for p(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2\!/2}.
    2. (b) Use properties of power series to find a power series representation for P.
    3. (c) Use the first four terms of the series representation for P to approximate P(-0.5\leq Z\leq 0.3).
    4. (d) Use technology to approximate P(-0.5\leq Z\leq 0.3).

In Problems 49–52, use a Maclaurin expansion to find each integral.

  1. \int \frac{1}{1+x^{2}}dx

C + \sum\limits_{k=0}^{\infty}{\dfrac{(-1)^{k}x^{2k+1}}{2k+1}}

  1. \int {\sec x}\,dx

  1. \int e^{x^{1/3}}dx

C + \sum\limits_{k=0}^{\infty} {\dfrac{3x^{\frac{k}{3}+1}}{(3+k)k!}}

  1. \int \ln (1+x)\,dx

623

  1. Even Functions Show that if f is an even function, then the Maclaurin expansion for f has only even powers of x.

See Student Solutions Manual.

  1. Odd Functions Show that if f is an odd function, then the Maclaurin expansion for f has only odd powers of x.

  1. Show that (1+x)^{m}=\sum\limits_{k\,=\,0}^{\infty } {m\choose k}x^{k}, when m is a nonnegative integer, by showing that R_{n}(x)\rightarrow 0 as n\rightarrow \infty.

See Student Solutions Manual.

  1. Show that the series \sum\limits_{k\,=\,0}^{\infty }{m\choose k}\,x^{k} converges absolutely for \vert x\vert <1 and diverges for \vert x\vert >1 if m<0. (Hint: Use the Ratio Test.)

  1. Show that the interval of convergence of the Maclaurin expansion for f(x) =\sin ^{-1}x is [-1,1].

See Student Solutions Manual.

  1. Euler’s Error Euler believed \frac{1}{2}=1-1+1-1+1-1 +\cdots . He based his argument to support this equation on his belief in the identification of a series and the values of the function from which it was derived.

    1. (a) Write the Maclaurin expansion for \frac{1}{1+x}. Do this without calculating any derivatives.
    2. (b) Evaluate both sides of the equation you derived in (a) at x=1 to arrive at the formula above.
    3. (c) Criticize the procedure used in (b).

Challenge Problems

  1. Find the exact sum of the infinite series: \frac{x^{3}}{1(3)}-\frac{x^{5}}{3(5)}+\frac{x^{7}}{5(7)} - \frac{x^{9}}{7(9)}+\cdots \quad \hbox{for } x=1

\dfrac{\pi}{4} - \dfrac{1}{2}

  1. Find an elementary expression for \sum\limits_{k\,=\,1}^{\infty }\frac{x^{k+1}}{k(k+1) }. Hint: Integrate the series for \ln \frac{1}{1-x}.

  1. Show that \sum\limits_{k\,=\,1}^{\infty }\frac{k}{(k+1)!}=1

See Student Solutions Manual.

  1. Let s_{n}=\frac{1}{1!}+\frac{1}{2!}+\cdots \,+\frac{1}{n!},\quad n=1, 2, 3, \ldots \,.

    1. (a) Show that n!\geq 2^{n-1}.
    2. (b) Show that 0<s_{n}\leq 1+\frac{1}{2}+\left( \frac{1}{2}\right) ^{2}+\cdots +\left( \frac{1}{2}\right) ^{n-1}.
    3. (c) Show that 0<s_{n}<s_{n+1}<2. Then, conclude that S=\lim\limits_{n\,\rightarrow \,\infty }s_{n} \,\hbox{and}\, S\leq 2.
    4. (d) Let t_{n}=\left[ 1+\frac{1}{n}\right] ^{n}. Show that \begin{eqnarray*} t_{n}&=&1+1+\frac{1}{2!}\left[ 1-\frac{1}{n}\right] + \frac{1}{3!}\left[ 1- \frac{1}{n}\right] \left[ 1-\frac{2}{n}\right] +\cdots \\[4pt] &&+\,\frac{1}{n!} \left[ 1-\frac{1}{n}\right] \left[ 1-\frac{2}{n}\right]\,\cdots \left[ 1-\frac{n-1}{n}\right] <s_{n}+1 \end{eqnarray*}
    5. (e) Show that 0<t_{n}<t_{n+1}<3. Then, conclude that e=\lim\limits_{n\,\rightarrow \,\infty }t_{n}\leq 3.
  1. Show that \left[ 1+\frac{1}{n}\right] ^{n}<e for all n>0.

See Student Solutions Manual.

  1. From the fact that \sin t\leq t for all t\geq 0, use integration repeatedly to prove 1-\frac{x^{2}}{2!}\leq \cos x\leq 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}\qquad \hbox{for all }x\geq 0

  1. Find the first four nonzero terms of the Maclaurin expansion for f(x) =(1+x) ^{x}.

1+x^{2}-\dfrac{x^{3}}{2}+\dfrac{5x^{4}}{6} + \ldots

  1. Show that f(x) =\left\{ \begin{array}{l@{\quad}l} e^{-1/x^{2}} & x\neq 0 \\ 0 & x=0 \end{array} \right. has a Maclaurin expansion at x=0. Then show that the Maclaurin series does not converge to f.