EXAMPLE 2Approximating \(y=\sqrt{1+x}\)

  1. (a) Write the Maclaurin expansion for \(y=\sqrt{1+x}\) using a binomial series.
  2. (b) Approximate \(\sqrt{1+x}\) using the first five terms of the Maclaurin series.
  3. (c) Graph \(y=\sqrt{1+x}\) together with the first five terms of the approximation found in (b).
  4. (d) Comment on the graphs in (c).
  5. (e) Use the first five terms of the approximation for \(\sqrt{1+x}\) to approximate \(\sqrt{1.2}\). What is the error in using this approximation.

Solution (a) For \(-1\leq x\leq 1\), we have \begin{eqnarray}\quad \sqrt{1+x} &=&(1+x) ^{1/2}=\sum\limits_{k\,=\,0}^{\infty }{{ \dfrac{1}{2}}\choose {\vphantom{\vrule height10pt depth.2pt}k}}\,x^{k} \nonumber\\[8pt] &=& {1}+\dfrac{1}{2}{\,}x+\dfrac{\dfrac{1}{2}\left( - \dfrac{1}{2}\right) }{2!}x^{2}+\dfrac{\dfrac{1}{2}\,\left( -\dfrac{1}{2} \right) \left( -\dfrac{3}{2}\right) }{3!}\,x^{3}+\cdots +{{\dfrac{1}{2 }}\choose {\vphantom{\vrule height10pt depth.2pt}n}}x^{n}+\cdots \nonumber \end{eqnarray}

625

(b) From part (a), we have \[ \begin{equation*} \sqrt{1+x} \approx 1+\dfrac{1}{2}x-\dfrac{1}{8}x^{2}+\dfrac{1}{16}x^{3}-\dfrac{5}{128}x^{4} \tag{2} \end{equation*} \]

(c) The graphs of \(y=\sqrt{1+x}\) and the first five terms of the approximation in (2) are given in Figure 30.

(d) On the interval of convergence \([-1,1]\), the graphs are almost identical. Outside this interval, the graphs diverge.

(e) Using (2) and \(x=0.2,\) we have \[ \sqrt{1.2}\approx 1+\dfrac{1}{2}(0.2) -\dfrac{1}{8}(0.2) ^{2}+\dfrac{1}{16}(0.2) ^{3}-\dfrac{5}{128}(0.2) ^{4}=1.0954375 \]

Since the binomial series for \(y=\sqrt{1+x}\) at \(x=0.2\) is an alternating series that satisfies the conditions of the Alternating Series Test, the error \(E\) in using the first five terms of the series as an approximation of \(\sqrt{1.2}\) is less than or equal to the absolute value of the 6th term at \(x=0.2.\) That is, \[ \begin{eqnarray*} &&E\leq \left\vert \dfrac{\dfrac{1}{2}\,\left( -\dfrac{1}{2}\right) \left( -\dfrac{3}{2}\right) \left( -\dfrac{5}{2}\right) \left(- \dfrac{7}{2}\right)}{5!}\,x^{5}\right\vert \underset{\underset{\color{#0066A7}{\scriptsize\hbox{x=0.2}}}{\color{#0066A7}{\uparrow}}}{=} \dfrac{7}{256}(0.2) ^{5}= 8.\, 75\times 10^{-6}\\[-23pt] \end{eqnarray*} \]