EXAMPLE 4Approximating a Logarithm

  1. (a) Approximate \(\ln 2\) using the first three terms of (7).
  2. (b) Approximate \(\ln 3\) using the first three terms of (7).

Solution (a) In (7), we let \(N=1\) and use the first three terms of the series; then \[ \ln 2\approx 2 \, \left[ \frac{1}{3}+\frac{1}{3}\left( \frac{1}{3}\right) ^{3}+\frac{1}{5}\left( \frac{1}{3}\right) ^{5} \right] \approx 0.693004 \]

(The first three terms of this series approximates \(\ln 2\) correct to within 0.001.)

(b) To find \(\ln 3\), let \(N=2\) and use \(\ln 2=0.693004\) in (7). \begin{eqnarray*} \ln 3 & \approx & \ln 2+2 \,\left[ \dfrac{1}{5}+\dfrac{1}{3}\left( \dfrac{1}{5} \right) ^{3}+\dfrac{1}{5}\left( \dfrac{1}{5}\right) ^{5}\right] \\ & \approx & 0.693004+2\left[ \dfrac{1}{5}+\dfrac{1}{3}\left( \dfrac{1}{5}\right) ^{3}+ \dfrac{1}{5}\left( \dfrac{1}{5}\right) ^{5}\right] \approx 1.098465 \end{eqnarray*}