Chapter 2

Section 2.1

1. True

2. True

3. Prime, slope, (c, f (c))

4. True

5. 6

6. derivative

7.

The velocity appears to approach 60 cm/s.

9. v(t) = 4 m/s at t = 0, v(t) = 16 m/s at t = 2, v(t) = 6t0 + 4 m/s at any t0

11. v(1) = 7 cm/s, v(4) =

13. y = −12x – 12

15. y = 12x + 16

17. y = −x + 2

19. y =

21. y =

23. (a) 5

(b) 5

(c) 5

25. (a) 0

(b)

(c)

27. f′(1) = 2

29. f′(0) = 0

31. f′(−1) = −5

33. f′(4) =

35. f′(0) = −7

37. (a) 7 ≤ t ≤ 10 and 11 ≤ t ≤ 13

(b) 0 ≤ t ≤ 4

(c) 4 ≤ t ≤ 7 and 10 ≤ t ≤ 11

(d) Average speed ≈ 0.675 mi/min

(e) 0.415 mi/min

39. −3

41. No

43. R′(50) = 0.59

45. (a) 250 sales per day

(b) 200 sales per day

47. (a) 32 ft/s

(b) t ≈ 7.914 s

(c) Average velocity ≈ 126.618 ft/s

(d) v(7.914) ≈ 253.235 ft/s

49. (a) 9.8 m/s

(b) t ≈ 4.243 s

(c) Average velocity ≈ 20.789 m/s

(d) v(4.243) ≈ 41.578 m/s

51. (a) ≈ 12.060 cm3/cm

(b) V′(2) = 12 cm3/cm

53. f′(x) = 2ax +b

55. (a) d′(t) is the rate of change of diameter (in centimeters) with respect to time (in days).

(b) d′(1) > d′(20)

(c) d′(1) is the instantaneous rate of change of the peach’s diameter on day 1 and d′(20) is the instantaneous rate of change of the peach’s diameter on day 20.

Section 2.2

1. False

2. False

3. (b)Vertical

4. derivative

5. 0

7. 2

9. −2c

11. f′(x) = 0, all real numbers

13. f′(x) = 6x+1, all real numbers

15. f′(x) =

17. f′(x) =

19. f′(x) = 4x – 5

21. f′(x) = 3x2 − 8

23. Not a graph of f and f

25. Graph of f and f′. The black curve is the graph of f; the gray curve is the graph of f′.

27.

29.

31. (B)

33. (A)

35. f′(−8) =

37. f′(2) does not exist.

39. f′(1) = 2

41. does not exist.

43. f′(−1) does not exist.

45. (a) −2 and 4

(b) 0, 2, 6

47. (a) u1(1) does not exist.

(b) u1 (t) models a switch that is off when t < 1 and on when t ≥ 1.

49. f′(x) = m

51. f′(x) = −2/x3

53. f (x) = x2, c = 2

55. f (x) = x2, c = 1

57. f (x) = sin x, c =

59. f (x) = 2(x + 2)2 − (x + 2), c = 0

61. (a) Continuous at 0

(b) f′(0) = 0

(c)

63. (a) s′(4.99) = 74.7003 ft/s; s′(5.01) = 0 ft/s

(b) Not continuous

(c) Answers will vary.

65.

67.

69. (a) 2πr(Δr)+π(Δr)2

(b) 2πΔr

(c) 2πr +πΔr

(d) 2π

(e) 2π

71. See Student Solutions Manual.

73. See Student Solutions Manual.

75. (a) Parallel

(b) Perpendicular

77. (a) k = 4

(b) f′(3) = 12

(c) f′(x) = 4x

Section 2.3

1. 0; 3x2

2. nxn−1

3. True

4.

5. ex

6. True

7. f′(x) = 3

9. f′(x) = 2x + 3

11. f′(u) = 40u4 − 5

13. f′(s) = 3as2 + 3s

15. f′(t) =

17. f′(t) =

19. f′(x) =

21. f′(x) = 2ax + b

23. f′(x) = 4ex

25. f′(u) = 10u − 2eu

27.

29. 2π R

31. 4πr2

33. (a) 3

(b) y = 3x − 1

(c)

35. (a) 6

(b) y = 6x + 1

(c)

37. (a) (2,−8)

(b) y = −8

(c) x > 2

(d) x < 2

(e)

(f) f is increasing when x = 2 and decreasing when x < 2.

39. (a) None

(b) None

(c) All real numbers

(d) None

(e)

(f) f is increasing for all x.

41. (a) (1, 0), (−1, 4)

(b) y = 0, y = 4

(c) x < −1 or x = 1

(d) −1 < x < 1

(e)

(f) f is increasing when x < −1 or x > 1 and decreasing when −1 < x < 1.

43. v(0) = −1 m/s and v(5) = 74 m/s

45. (a) v(t) = 2t − 5

(b) t =

47. (a)

(b)

(c)

(d)

(e)

(f)

49. (a) f′(x) = 24x2 − 24x + 6

(b) f′(x) = 6(2x − 1)2

51.

53. 20480

55. 3ax2

57. y = 5x − 3

59. y = x + 1

61. y = , y = 3x −9

63. (a) y = 45x – 65

(b) ,

(c) and

(d)

65. See Student Solutions Manual.

67. See Student Solutions Manual.

69. a = 3, b = 2, c = 0

71. (2, 4)

73. (a) 0

(b)kR

(c) −2kR

75. (a)

(b) 2.694 × 1023

(c) 2.694 × 1023 w

77. F′(x) = mx

79. See Student Solutions Manual.

81.

83.

85. −4

87. Q =

89. y =

91. (a) c = 1

(b) y = 12x − 16 and y = 12x + 1

Section 2.4

1. False

2. f (x)g′(x) + f′(x)g(x)

3. False

4.

5. True

6.

7. 0

8.

9. f′(x) = ex (x + 1)

11. f′(x) = 5x4 − 2x

13. f′(x) = 18x2 + 6x – 10

15. s′(t) = 16t7 − 24t5 + 10t4 − 4t3 + 4t − 1

17. f′(x) = x3ex + 3x2ex + ex + 3x2

19. g′ (s) =

21. G′ (u) =

23. f′(x) =

25. f′(w) =

27. s′(t) =

29. f′(x) =

31. f′(x) =

33. f′(x) = 9x2 +

35. s′(t) =

37. f′(x) =

39. f′(x) =

41. f′(x) = 6x + 1, f″(x) = 6

43. f′(x) = f″(x) = ex

45. f′(x) = ex(x + 6), f″(x) = ex(x + 7)

47. f′(x) = 8x3 + 3x2 + 10, f″(x) = 24x2 + 6x

49. f′(x) =

51. f′(t) =

53. f′(x) =

55. (a) y′ =

(b) y′ =

57. v(t) = 32t + 20, a(t) = 32

59. v(t) = 9.8t + 4, a(t) = 9.8

61. f(4)(x) = 0

63. 5040

65. eu

67.ex

69. (a) (b)

(c) (0, 0), (2, 4)

(d)

71. (a)

(b) y =

(c) (0, 0),

(d)

73. (a) (−2, 5), (2,−27)

(b) y = 5, y = −27

(c) x < −2 or x > 2

(d) −2 < x < 2

(e)

75. (a) (0, 0), (−2,−4)

(b) y = 0, y = −4

(c) x < −2 or x > 0

(d) −2 < x < −1 or −1 < x < 0

(e)

77. (a) (−1, )

(b) y =

(c) x > −1

(d) x < −1

(e)

79. (a) (−1,−2e), (3, )

(b) y = −2e, y =

(c) −1 < x < 3

(d) x < −1 or x > 3

(e)

81. (a)

(b)

(c)

(d)

(e)

(f)

83. (a) v(t) = −9.8t + 39.2

(b) t = 4 seconds

(c) 78.4 m

(d) −9.8 m/s2

(e) t = 8 s

(f) v = −39.2 m/s

(g) 156.8 m

85. (a) 0 ≤ x ≤ 100

(b)

(c) $13,333.33

(d) C′(x) =

(e) C′(40) = 0.112 = $112/%, C′(60) = 0.220 = $220/%, C′(80) = 0.611 = $611/%, C′(90) = 1.375 = $1,375/%

(f) Answers will vary.

87. (a)

(b) , f′(1) ≈ −0.044 mg/Lh

(c) Answers will vary.

(d)

(e) Concentration is highest at approximately 45 min and is about 0.14 mg/L.

89. (a)

(b) D′(5) = −128, D′(10) = −48, D′(15) = −22.145

91. (a)

(b) As the radius increases, pressure within the container decreases.

(c) p ≈ −415945.358 Pa/m

93. (a) v(t) = 3t2 − 1, a(t) = 6t, J (t) = 6, S(t) = 0

(b) t = ±

(c) a(2) = 12 m/s2, a(5) = 30 m/s2

(d) No

(e) Answers will vary.

95. (a) a(t) = 1.6 + 1.998t m/s2

(b) J (t) = 1.998 m/s3

97. (a)

(b) As radius increases, current density decreases.

(c) −1.273 × 1010 amps/m3

99. See Student Solutions Manual.

101. y′ = 6x5 − 5x4 + 20x3 − 18x2 + 2x − 5

103. y′ = 9x2 (x3 + 1)2

105.

107. See Student Solutions Manual.

109.

111. (a) f′(x) =

(b) f′(x) =

(c) f(5)(x) =

113. (a)

(b)

115. (a) f1(x) =

(b) a0 = 1, a1 = 1, a2 = 2, a3 = 3, a4 = 5, a5 = 8

(c) an+2 = an+1 + an

(d)

Section 2.5

1. False

2. False

3. True

4. False

5. f′(π) = 2

7. f′(π/3) =

9. y′ = 3 cos θ + 2 sin θ

11. y′ = cos2 x − sin2 x = cos 2x

13. y′ = cos tt sin t

15. y′ = ex (sec2 x + tan x)

17. y′ = π sec u (sec2 u + tan2 u)

19.

21. y′ = x(x cos x + 2 sin x)

23. \(y'=t\sec^{2}t+\tan t-\sqrt{3}\sec t\tan t\)

25.

27. y′ = (cos t + t cos t − sin t)/(1 + t)2

29. y′ = (cos x − sin x)/ex

31. y′ = −2/(sin θ − cos θ)2

33. y′ = (sec t tan t + t tan2 tt − tan t)/(1 + t sin t)2

35. y′ = −csc θ(csc2 θ + cot2 θ)

37. y′ = 2 sec2 x/(1 − tan x)2

39. y″ = −sin x

41. y″ = 2 tan θ sec2 θ

43. y″ = 2 cos tt sin t

45. y″ = 2ex cos x

47. y″ = 3 cos u − 2 sin u

49. y″ = −(a sin x + b cos x)

51. (a) y = x

(b)

53. (a) y = x

(b)

55. (a) y =

(b)

57. (a) {(tan−1 2+2nπ, )}, {(tan−1 2+(2n +1)π, )}, where n is an integer

(b)

59. (a) {(2nπ, 1)}, {((2n + 1)π,−1)}, where n is an integer

(b)

61. f(n)(x) =

63. −1

65. (a) v(t) =

(b) + , where n is an integer

(c) a(t) =

(d) , where n is an integer

(e)

67. (a)

(b)

69. (a)

(b) Max = 4, Min =

(c) x = π, 2π, 3π

(d) w(π − 0.1) ≈ 0.395, w(2π − 0.1) ≈ −0.045

(e) Answers will vary.

71. (a) $10,000, $25,093, $15,411, $37,570

(b) R(t) = cos t + 0.3

(c) 10,540 dollars/2-months

(d)

(e) Answers will vary.

73. n = 4

75. See Student Solutions Manual.

77. See Student Solutions Manual.

79. See Student Solutions Manual.

81. See Student Solutions Manual.

Review Exercises

1. (a)

(b)

(c)

3. 2

5. 5

7. 2

9. f′(x) = 1

11. f′(x) =

13. Does not have a derivative at c = 1.

15. Not the graph of a function and its derivative.

17.

19. f′(x) = 5x4

21. f′(x) = x3

23. f′(x) = 4x – 3

25. F′(x) = 14x

27. f′(x) = 15(x2 − 6x + 6)

29. f′(x) =

31. f′(x) =

33. f′(x) =

35. f′(x) =

37. f′(x) =

39. s′(t) =

41. F′(z) =

43. g′(z) =

45. s′(t) = −et

47. f′(x) =

49. f′(x) = x cos x + sin x

51. G′(u) = sec u(sec u + tan u)

53. f′(x) = ex(cos x +sin x)

55. f′(x) = 2(cos2 x −sin2 x) = 2 cos (2x)

57. f′(x) = 2 cos x sin x = sin (2x)

59. f′(θ) =

61. f′(x) = 50x + 30, f″;(x) = 50

63. g′(u) =

65. f′(u) =

67. (a) y = −7x + 5

(b)

69. (a) y = −x − 1

(b)

71. (a) v(0) = −6 m/s, v(5) = 4 m/s, v(t) = 2t − 6 m/s

(b) a(t) = 2 m/s2

73. (a)

(b) R(x) = − 5x

(c) R′(10) =

75. f′(3) does not exist.

77. 8x − 16, f (x) = (4 − 2x)2