Chapter Introduction
Hemoglobin: Portrait of a Protein in Action
In the bloodstream, red cells carry oxygen from the lungs to the tissues, where demand is high. Hemoglobin, the protein that gives blood its red color, is responsible for the transport of oxygen via its four heme-bound subunits. Hemoglobin was one of the first proteins to have its structure determined; the folding of a single subunit is shown in this hand-drawn view.
[Left, Andrew Syred/Stone/Getty Images.]
OUTLINE
Myoglobin and Hemoglobin Bind Oxygen at Iron Atoms in Heme
Hemoglobin Binds Oxygen Cooperatively
Hydrogen Ions and Carbon Dioxide Promote the Release of Oxygen: The Bohr Effect
Mutations in Genes Encoding Hemoglobin Subunits Can Result in Disease
The transition from anaerobic to aerobic life was a major step in evolution because it uncovered a rich reservoir of energy. Fifteen times as much energy is extracted from glucose in the presence of oxygen than in its absence. For single-celled and other small organisms, oxygen can be absorbed into actively metabolizing cells directly from the air or surrounding water. Vertebrates evolved two principal mechanisms for supplying their cells with an adequate supply of oxygen. The first is a circulatory system that actively delivers oxygen to cells throughout the body. The second is the use of the oxygen-transport and oxygen-storage proteins, hemoglobin and myoglobin. Hemoglobin, which is contained in red blood cells, is a fascinating protein, efficiently carrying oxygen from the lungs to the tissues while also contributing to the transport of carbon dioxide and hydrogen ions back to the lungs. Myoglobin, located in muscle, facilitates the diffusion of oxygen through the cell for the generation of cellular energy and provides a reserve supply of oxygen available in time of need.
A comparison of myoglobin and hemoglobin illuminates some key aspects of protein structure and function. These two evolutionarily related proteins employ nearly identical structures for oxygen binding (Chapter 6). However, hemoglobin is a remarkably efficient oxygen carrier, able to use as much as 90% of its potential oxygen-carrying capacity effectively. Under similar conditions, myoglobin would be able to use only 7% of its potential capacity. What accounts for this dramatic difference? Myoglobin exists as a single polypeptide, whereas hemoglobin comprises four polypeptide chains. The four chains in hemoglobin bind oxygen cooperatively, meaning that the binding of oxygen to a site in one chain increases the likelihood that the remaining chains will bind oxygen. Furthermore, the oxygen-binding properties of hemoglobin are modulated by the binding of hydrogen ions and carbon dioxide in a manner that enhances oxygen-carrying capacity. Both cooperativity and the response to modulators are made possible by variations in the quaternary structure of hemoglobin when different combinations of molecules are bound.
Hemoglobin and myoglobin have played important roles in the history of biochemistry. They were the first proteins for which three-dimensional structures were determined by x-ray crystallography. Furthermore, the possibility that variations in protein sequence could lead to disease was first proposed and demonstrated for sickle-cell anemia, a blood disease caused by mutation of a single amino acid in one hemoglobin chain. Hemoglobin has been and continues to be a valuable source of knowledge and insight, both in itself and as a prototype for many other proteins that we will encounter throughout our study of biochemistry.