File | Title | Manuscript Id |
Chapter 11 Introduction | morris2e_ch11_1.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_1_dlap.xml | 560f1e98757a2e2008000000 |
11.1 Cell Division
| morris2e_ch11_2.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_2_dlap.xml | 560f1e98757a2e2008000000 |
Prokaryotic cells reproduce by binary fission.
| morris2e_ch11_3.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_3_dlap.xml | 560f1e98757a2e2008000000 |
Eukaryotic cells reproduce by mitotic cell division.
| morris2e_ch11_4.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_4_dlap.xml | 560f1e98757a2e2008000000 |
The cell cycle describes the life cycle of a eukaryotic cell.
| morris2e_ch11_5.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_5_dlap.xml | 560f1e98757a2e2008000000 |
11.2 Mitotic Cell Division
| morris2e_ch11_6.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_6_dlap.xml | 560f1e98757a2e2008000000 |
The DNA of eukaryotic cells is organized as chromosomes.
| morris2e_ch11_7.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_7_dlap.xml | 560f1e98757a2e2008000000 |
Prophase: Chromosomes condense and become visible.
| morris2e_ch11_8.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_8_dlap.xml | 560f1e98757a2e2008000000 |
Prometaphase: Chromosomes attach to the mitotic spindle.
| morris2e_ch11_9.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_9_dlap.xml | 560f1e98757a2e2008000000 |
Metaphase: Chromosomes align as a result of dynamic changes in the mitotic spindle.
| morris2e_ch11_10.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_10_dlap.xml | 560f1e98757a2e2008000000 |
Anaphase: Sister chromatids fully separate.
| morris2e_ch11_11.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_11_dlap.xml | 560f1e98757a2e2008000000 |
Telophase: Nuclear envelopes re-form around newly segregated chromosomes.
| morris2e_ch11_12.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_12_dlap.xml | 560f1e98757a2e2008000000 |
The parent cell divides into two daughter cells by cytokinesis.
| morris2e_ch11_13.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_13_dlap.xml | 560f1e98757a2e2008000000 |
11.3 Meiotic Cell Division
| morris2e_ch11_14.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_14_dlap.xml | 560f1e98757a2e2008000000 |
Pairing of homologous chromosomes is unique to meiosis.
| morris2e_ch11_15.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_15_dlap.xml | 560f1e98757a2e2008000000 |
Crossing over between DNA molecules results in exchange of genetic material.
| morris2e_ch11_16.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_16_dlap.xml | 560f1e98757a2e2008000000 |
The first meiotic division brings about the reduction in chromosome number.
| morris2e_ch11_17.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_17_dlap.xml | 560f1e98757a2e2008000000 |
The second meiotic division resembles mitosis.
| morris2e_ch11_18.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_18_dlap.xml | 560f1e98757a2e2008000000 |
Division of the cytoplasm often differs between the sexes.
| morris2e_ch11_19.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_19_dlap.xml | 560f1e98757a2e2008000000 |
Meiosis is the basis of sexual reproduction.
| morris2e_ch11_20.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_20_dlap.xml | 560f1e98757a2e2008000000 |
11.4 Regulation of the Cell Cycle
| morris2e_ch11_21.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_21_dlap.xml | 560f1e98757a2e2008000000 |
Protein phosphorylation controls passage through the cell cycle.
| morris2e_ch11_22.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_22_dlap.xml | 560f1e98757a2e2008000000 |
Different cyclin–CDK complexes regulate each stage of the cell cycle.
| morris2e_ch11_23.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_23_dlap.xml | 560f1e98757a2e2008000000 |
Cell cycle progression requires successful passage through multiple checkpoints.
| morris2e_ch11_24.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_24_dlap.xml | 560f1e98757a2e2008000000 |
11.5 Case 2: What Genes Are Involded in Cancer?
| morris2e_ch11_25.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_25_dlap.xml | 560f1e98757a2e2008000000 |
Oncogenes promote cancer.
| morris2e_ch11_26.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_26_dlap.xml | 560f1e98757a2e2008000000 |
Proto-oncogenes are genes that when mutated may cause cancer.
| morris2e_ch11_27.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_27_dlap.xml | 560f1e98757a2e2008000000 |
Tumor suppressors block specific steps in the development of cancer.
| morris2e_ch11_28.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_28_dlap.xml | 560f1e98757a2e2008000000 |
Most cancers require the accumulation of multiple mutations.
| morris2e_ch11_29.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_29_dlap.xml | 560f1e98757a2e2008000000 |
Chapter 11 Summary | morris2e_ch11_30.html | 560f1e98757a2e2008000000 |
DLAP questions | morris2e_ch11_30_dlap.xml | 560f1e98757a2e2008000000 |