File | Title | Manuscript Id |
Chapter 41 Introduction | morris2e_ch41_1.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_1_dlap.xml | 563c39b3757a2ed243000000 |
41.1 Water and Electrolyte Balance
| morris2e_ch41_2.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_2_dlap.xml | 563c39b3757a2ed243000000 |
Osmosis governs the movement of water across cell membranes.
| morris2e_ch41_3.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_3_dlap.xml | 563c39b3757a2ed243000000 |
Osmoregulation is the control of osmotic pressure inside cells and organisms.
| morris2e_ch41_4.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_4_dlap.xml | 563c39b3757a2ed243000000 |
Osmoconformers match their internal solute concentration to that of the environment.
| morris2e_ch41_5.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_5_dlap.xml | 563c39b3757a2ed243000000 |
Osmoregulators have internal solute concentrations that differ from that of their environment.
| morris2e_ch41_6.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_6_dlap.xml | 563c39b3757a2ed243000000 |
Case 7: Can the loss of water and electrolytes in exercise be exploited as a strategy to hunt prey?
| morris2e_ch41_7.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_7_dlap.xml | 563c39b3757a2ed243000000 |
41.2 Excretion of Wastes
| morris2e_ch41_8.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_8_dlap.xml | 563c39b3757a2ed243000000 |
The excretion of nitrogenous wastes is linked to an animal’s habitat and evolutionary history.
| morris2e_ch41_9.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_9_dlap.xml | 563c39b3757a2ed243000000 |
Excretory organs work by filtration, reabsorption and secretion.
| morris2e_ch41_10.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_10_dlap.xml | 563c39b3757a2ed243000000 |
Animals have diverse excretory organs.
| morris2e_ch41_11.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_11_dlap.xml | 563c39b3757a2ed243000000 |
Vertebrates filter blood under pressure through paired kidneys.
| morris2e_ch41_12.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_12_dlap.xml | 563c39b3757a2ed243000000 |
41.3 Structure and Function of the Mammalian Kidney
| morris2e_ch41_13.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_13_dlap.xml | 563c39b3757a2ed243000000 |
The mammalian kidney has an outer cortex and inner medulla.
| morris2e_ch41_14.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_14_dlap.xml | 563c39b3757a2ed243000000 |
Glomerular filtration isolates wastes carried by the blood along with water and small solutes.
| morris2e_ch41_15.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_15_dlap.xml | 563c39b3757a2ed243000000 |
The proximal convoluted tubule reabsorbs solutes by active transport.
| morris2e_ch41_16.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_16_dlap.xml | 563c39b3757a2ed243000000 |
The loop of Henle acts as a countercurrent multiplier to create a concentration gradient from the cortex to the medulla.
| morris2e_ch41_17.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_17_dlap.xml | 563c39b3757a2ed243000000 |
The distal convoluted tubule secretes additional wastes.
| morris2e_ch41_18.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_18_dlap.xml | 563c39b3757a2ed243000000 |
The final concentration of urine is determined in the collecting ducts and is under hormonal control.
| morris2e_ch41_19.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_19_dlap.xml | 563c39b3757a2ed243000000 |
The kidneys help regulate blood pressure and blood volume.
| morris2e_ch41_20.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_20_dlap.xml | 563c39b3757a2ed243000000 |
Chapter 41 Summary | morris2e_ch41_21.html | 563c39b3757a2ed243000000 |
DLAP questions | morris2e_ch41_21_dlap.xml | 563c39b3757a2ed243000000 |