Represent the helix in Example 1(b). \begin{equation*} \mathbf{r}(t)=\cos t\mathbf{i}+\sin t\mathbf{j}+t\mathbf{k}\quad t\geq 0 \end{equation*}
so the parameter is arc length.
Since the graph of the helix starts at \(t=0,\) and \(\left\Vert \mathbf{r}^{\prime}(t)\right\Vert\;=\;\sqrt{2}\) for all \(t\) (Example 1(b)), we have \begin{equation*} s( t)\;=\;\int_{0}^{t}\sqrt{2}\kern.7ptdu=\Big[ \sqrt{2}\kern.7ptu\Big] _{0}^{t}= \sqrt{2}\kern.7pt t \end{equation*}
Then \(t=\dfrac{s}{\sqrt{2}}.\) The helix using arc length \(s\) as the parameter is expressed as \begin{equation*} \mathbf{r}( s)\;=\;\cos \dfrac{s}{\sqrt{2}}\kern.7pt\mathbf{i}+\sin \dfrac{s}{ \sqrt{2}}\kern.7pt\mathbf{j}+\dfrac{s}{\sqrt{2}}\kern.7pt\mathbf{k}\quad s\geq 0 \end{equation*}