Processing math: 42%

EXAMPLE 2Changing the Parameter to Arc Length

Represent the helix in Example 1(b). r(t)=costi+sintj+tkt0

so the parameter is arc length.

Solution The arc length function s(t) along the curve r=r(t), atb, from t=a to an arbitrary t is given by the integral s(t)=ta

Since the graph of the helix starts at t=0, and \left\Vert \mathbf{r}^{\prime}(t)\right\Vert\;=\;\sqrt{2} for all t (Example 1(b)), we have \begin{equation*} s( t)\;=\;\int_{0}^{t}\sqrt{2}\kern.7ptdu=\Big[ \sqrt{2}\kern.7ptu\Big] _{0}^{t}= \sqrt{2}\kern.7pt t \end{equation*}

Then t=\dfrac{s}{\sqrt{2}}. The helix using arc length s as the parameter is expressed as \begin{equation*} \mathbf{r}( s)\;=\;\cos \dfrac{s}{\sqrt{2}}\kern.7pt\mathbf{i}+\sin \dfrac{s}{ \sqrt{2}}\kern.7pt\mathbf{j}+\dfrac{s}{\sqrt{2}}\kern.7pt\mathbf{k}\quad s\geq 0 \end{equation*}