Using the Divergence Theorem to Find Flux
Find the mass of a fluid of constant mass density \(\rho\) flowing across the cube enclosed by the planes \(x=0\), \(x=1\), \(y=0\), \(y=1\), \(z=0\), and \(z=1\) in a unit of time, in the direction of the outer unit normal vectors if the velocity of the fluid at any point on the cube is \(\mathbf{F}=\mathbf{F} (x,y,z)=4xz\mathbf{i}-y^{2}\mathbf{j}+yz\mathbf{k}\). (This is Example 8 on page 1035.)
Solution Suppose \(E\) is the solid cube and \(S\) is its surface. The mass of the fluid is \(\iint\limits_S \rho \mathbf{F}\,{\bf\cdot}\, \mathbf{n} \,dS\), where \(\mathbf{n}\) is the outer unit normal vector of \(S\). Since the velocity of the fluid is \(\mathbf{F}=4xz\mathbf{i}-y^{2}\mathbf{j}+yz\mathbf{ k}\), we have \({\rm{div}}\mathbf{F}=4z-2y+y=4z-y\). Now we use the Divergence Theorem. \[ \begin{eqnarray*} \iint\limits_{S}\rho \mathbf{F}\,{\bf\cdot}\, \mathbf{n}\,dS &=&\rho \iint\limits_S \mathbf{F}\,{\bf\cdot}\, \mathbf{n}\,dS=\rho \iiint\limits_E {\rm{div}}\mathbf{F} \,dV=\rho \int_{0}^{1}\int_{0}^{1}\int_{0}^{1}(4z-y)\,dz\,dy\,dx \\ &=&\rho \int_{0}^{1}\int_{0}^{1}(2-y)\,dy\,dx=\rho \int_{0}^{1}\dfrac{3}{2} \,dx=\dfrac{3}{2}\rho \end{eqnarray*} \]
which is the same as the result found in Example 8, Section 15.7.