Prove lim, where c\gt0.
Solution The domain of f(x)=\dfrac{1}{x} is \{x|x\neq 0\} .
For any \epsilon \gt0, we need to find a positive number \delta so that whenever 0 \lt \vert x-c\vert \lt \delta , then \left\vert \dfrac{1}{x}-\dfrac{1}{c}\right\vert \lt \epsilon . For x\neq 0, and c\gt0, we have \begin{equation*} \left\vert \frac{1}{x}-\frac{1}{c}\right\vert =\left\vert \frac{c-x}{xc} \right\vert =\frac{\vert c-x\vert }{\vert x\vert \cdot \vert c\vert }=\dfrac{|x-c|}{c\vert x\vert} \end{equation*}
The idea is to find a connection between \begin{equation*} \vert x-c\vert\qquad \hbox{ and }\qquad \dfrac{|x-c|}{c\vert x\vert } \end{equation*}
We proceed as in Example 3. Since we are interested in x near c, we restrict x to a small interval around c, say, \vert x-c\vert \lt \dfrac{c}{2}. Then, \begin{equation*} \begin{array}{rcl@{\qquad}l} -\dfrac{c}{2}&\lt&x-c \lt \dfrac{c}{2}\\ \dfrac{c}{2}&\lt&x \lt \dfrac{3c}{2} & {\color{#0066A7}{\hbox{Add \(c\) to each expression.}}} \end{array} \end{equation*}
Since c \gt 0, then x\gt\dfrac{c}{2}\gt0, and \dfrac{1}{x} \lt \dfrac{2}{c}. Now \begin{equation*} \left\vert \dfrac{1}{x}-\dfrac{1}{c}\right\vert =\dfrac{|x-c|}{c|x|} \lt \dfrac{2 }{c^{2}}\cdot |x-c|\qquad {\color{#0066A7}{\hbox{Substitute \(\dfrac{1}{\vert x\vert } \lt \dfrac{2}{c}\).}}} \end{equation*}
135
We can make \left\vert \dfrac{1}{x}-\dfrac{1}{c}\right\vert \lt\epsilon by choosing \delta =\dfrac{c^{2}}{2}\epsilon . Then \begin{equation*} \hbox{whenever }\vert x-c\vert \lt\delta =\dfrac{c^{2}}{2} \epsilon ,\hbox{ we have }\left\vert \dfrac{1}{x}-\dfrac{1}{c} \right\vert \lt \dfrac{2}{c^2} \cdot |x-c| \lt \dfrac{2}{c^2}\cdot \left(\dfrac{c^2}{2}\cdot \epsilon\right)=\epsilon \end{equation*}
But remember, there are two restrictions on |x-c|. \begin{equation*} \vert x-c\vert \lt\dfrac{c}{2}\qquad \hbox{ and }\qquad \vert x-c\vert \lt\dfrac{c^{2}}{2}\cdot \epsilon \end{equation*}
So, given any \epsilon \gt0, we choose \delta =\min \! \left(\! \dfrac{c}{2},\dfrac{c^{2}}{2}\cdot \epsilon\!\! \right) . Then whenever 0\lt\vert x-c\vert \lt\delta , we have \left\vert \dfrac{1}{x}-\dfrac{1}{c} \right\vert \lt\epsilon . This proves \lim\limits_{x\rightarrow c}\dfrac{1 }{x}=\dfrac{1}{c}, c\gt0.