Processing math: 7%

EXAMPLE 9Finding the Limit of an Indeterminate Form of the Type 010

Find lim

Solution The expression x^{x} is an indeterminate form at 0^{+} of the type 0^{0}. We follow the steps for finding \lim\limits_{x\rightarrow c}[ f(x) ] ^{g(x) }.

Do not stop after finding \lim\limits_{x\rightarrow c} \ln\;{y} { (=L)}. Remember, we want to find \lim\limits_{x\rightarrow c}{ y}(=e^{L}) .

Step 1 Let y=x^{x}. Then \ \ln y=x\ln x.

Step 2\lim\limits_{x\rightarrow 0^{+}}\;\ln y=\lim\limits_{x\rightarrow 0^{+}}( x\;\ln x) =0 [from Example 7(a)].

Step 3 Since \lim\limits_{x\rightarrow 0^{+}}\;\ln y=0, \lim\limits_{x\rightarrow 0^{+}}y=e^{0}=1.