Find lim
Solution The expression x^{x} is an indeterminate form at 0^{+} of the type 0^{0}. We follow the steps for finding \lim\limits_{x\rightarrow c}[ f(x) ] ^{g(x) }.
Do not stop after finding \lim\limits_{x\rightarrow c} \ln\;{y} { (=L)}. Remember, we want to find \lim\limits_{x\rightarrow c}{ y}(=e^{L}) .
Step 1 Let y=x^{x}. Then \ \ln y=x\ln x.
Step 2 \lim\limits_{x\rightarrow 0^{+}}\;\ln y=\lim\limits_{x\rightarrow 0^{+}}( x\;\ln x) =0 [from Example 7(a)].
Step 3 Since \lim\limits_{x\rightarrow 0^{+}}\;\ln y=0, \lim\limits_{x\rightarrow 0^{+}}y=e^{0}=1.