Loading [MathJax]/jax/output/CommonHTML/jax.js

EXAMPLE 2Using Part 1 of the Fundamental Theorem of Calculus

Find ddx3x2+14et+tdt.

The Chain Rule is discussed in Section 3.1, pp. 198-200.

Solution The upper limit of integration is a function of x, so we use the Chain Rule along with Part 1 of the Fundamental Theorem of Calculus.

Let y=3x2+14et+tdt and u(x)=3x2+1. Then y=u4et+tdt and ddx3x2+14et+tdt=dydx=Chain Ruledydududx=[dduu4et+tdt]dudx=Use the Fundamental Theoremeu+ududx=u=3x2+1dudx=6xe(3x2+1)+3x2+16x