Find ddx∫3x2+14√et+tdt.
The Chain Rule is discussed in Section 3.1, pp. 198-200.
Solution The upper limit of integration is a function of x, so we use the Chain Rule along with Part 1 of the Fundamental Theorem of Calculus.
Let y=∫3x2+14√et+tdt and u(x)=3x2+1. Then y=∫u4√et+tdt and ddx∫3x2+14√et+tdt=dydx=↑Chain Ruledydu⋅dudx=[ddu∫u4√et+tdt]⋅dudx=↑Use the Fundamental Theorem√eu+u⋅dudx=↑u=3x2+1; dudx=6x√e(3x2+1)+3x2+1⋅6x