Printed Page 198
198
Using the differentiation rules developed so far, it would be difficult to differentiate the function F(x)=(x3−4x+1)100
But notice that F is the composite function: y=f(u)=u100, u=g(x)=x3−4x+1, so y=F(x)=(f∘g)(x)=(x3−4x+1)100. In this section, we derive the Chain Rule, a result that enables us to find the derivative of a composite function. We use the Chain Rule to find the derivative in applications involving functions such as A(t)=102−90e−0.21t (market penetration, Problem 101) and v(t)=mgk(1−e−kt/m) (the terminal velocity of a falling object, Problem 103).
Composite functions and their properties are discussed in Section P.3, pp. 25-27.
Printed Page 198
Suppose y=(f∘g)(x)=f(g(x)) is a composite function, where y=f(u) is a differentiable function of u, and u=g(x) is a differentiable function of x. What then is the derivative of (f∘g)(x)? It turns out that the derivative of the composite function f∘g is the product of the derivatives f′(u)=f′(g(x)) and g′(x).
If you think of the function y=f(u) as the outside function and the function u=g(x) as the inside function, then the derivative of f∘g is the derivative of the outside function, evaluated at the inside function, times the derivative of the inside function.
That is,
If a function g is differentiable at x0 and a function f is differentiable at g(x0), then the composite function f∘g is differentiable at x0 and \bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{ (f\circ g)^\prime ( x_{0}) =f^\prime (g( x_{0})) \cdot g^\prime ( x_{0})}}
For differentiable functions y=f( u) and u=g( x), the Chain Rule, in Leibniz notation, takes the form \bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}}} where in \dfrac{dy}{du} we substitute u=g( x) .
The Chain Rule is proved using the definition of a derivative. First we observe that if x changes by a small amount \Delta x, the corresponding change in u=g( x) is \Delta u. That is, \Delta u depends on \Delta x. Also, g^\prime ( x) =\dfrac{du}{dx}=\lim\limits_{\Delta x\rightarrow 0} \dfrac{\Delta u}{\Delta x}
Since y=f( u) , the change \Delta u, which could equal 0, causes a change \Delta y . If \Delta u is never 0, then f^\prime ( u) =\dfrac{dy}{du}=\lim\limits_{\Delta u\rightarrow 0} \dfrac{\Delta y}{\Delta u}
To find \dfrac{dy}{dx}, we write \begin{eqnarray*} \dfrac{dy}{dx} &= &\lim\limits_{\Delta x\rightarrow 0}\dfrac{\Delta y}{\Delta x} \underset{\underset{\color{#0066A7}{{\hbox{\(\Delta u≠ 0\)}}}}{\color{#0066A7}{\uparrow }}}{=} \lim\limits_{\Delta x\rightarrow 0}\left( \dfrac{\Delta y}{\Delta x}\cdot \dfrac{\Delta u}{ \Delta u}\right)= \lim\limits_{\Delta x\rightarrow 0}\left( \dfrac{\Delta y}{ \Delta u}\cdot \dfrac{\Delta u}{\Delta x}\right) \\ &=& \left( \lim\limits_{\Delta x\rightarrow 0}\dfrac{\Delta y}{\Delta u}\right) \left( \lim\limits_{\Delta x\rightarrow 0}\dfrac{\Delta u}{\Delta x}\right) \end{eqnarray*}
199
Since the differentiable function u=g( x) is continuous, \Delta u\rightarrow 0 as \Delta x\rightarrow 0, so in the first factor we can replace \Delta x\rightarrow 0 by \Delta u\rightarrow 0. Then \dfrac{dy}{dx}=\left( \lim\limits_{\Delta u\rightarrow 0}\dfrac{\Delta y}{ \Delta u}\right) \left( \lim\limits_{\Delta x\rightarrow 0}\dfrac{\Delta u}{ \Delta x}\right) =\dfrac{dy}{du}\cdot \dfrac{du}{dx}
This proves the Chain Rule if \Delta u is never 0. To complete the proof, we need to consider the case when \Delta u may be 0. (This part of the proof is given in Appendix B.)
Find the derivative of:
(a) y=( x^{3}-4x+1) ^{100} \quad (b) y=\cos \left( 3x-\dfrac{\pi}{4}\right)
Solution (a) In the composite function y=( x^{3}-4x+1)^{100}, let u=x^{3}-4x+1. Then y=u^{100}. Now \dfrac{dy}{du} and \dfrac{du}{dx} are \begin{eqnarray*} \dfrac{dy}{du}=\dfrac{d}{du}u^{100}=100u^{99}\underset{\underset{\color{#0066A7}{\hbox {\(u=x^{3}-4x+1\)}}}{\color{#0066A7}{\uparrow}}}{=}100(x^{3}-4x+1)^{99} \end{eqnarray*}
and \begin{eqnarray*} \dfrac{du}{dx}=\dfrac{d}{dx}( x^{3}-4x+1) =3x^{2}-4 \end{eqnarray*}
We use the Chain Rule to find \dfrac{dy}{dx}. \begin{eqnarray*} && \dfrac{dy}{dx}\underset{\underset {\color{#0066A7} {\hbox{ Chain Rule}}} {\color{#0066A7}{{\uparrow}}}}{=}\dfrac{dy}{du}\cdot \dfrac{du}{dx}=100( x^{3}-4x+1) ^{99}(3x^{2}-4)\\ \end{eqnarray*}
(b) In the composite function y=\cos \left( 3x-\dfrac{\pi }{4} \right), let u=3x-\dfrac{\pi }{4}. Then y=\cos u and \begin{eqnarray*} && \dfrac{dy}{du}=\dfrac{d}{du}\cos u=-\sin u \underset{\underset{\color{#0066A7} {\hbox{\(u=3x-{\dfrac{\pi}{4}}\)}}}{\color{#0066A7}{{\uparrow}}}}{=} -\sin \left( 3x-\dfrac{\pi}{4}\right) \quad\hbox{and}\quad \dfrac{du}{dx}=\dfrac{d}{dx}\left( 3x-\dfrac{\pi }{4}\right) =3\\ \end{eqnarray*}
Now we use the Chain Rule. \begin{eqnarray*} && \dfrac{dy}{dx}\underset{\underset{\color{#0066A7}{\hbox{Chain Rule}}}{\color{#0066A7}{{\uparrow}}}}{=}\dfrac{dy}{du}\cdot \dfrac{du}{dx}=-\!\sin\! \left(3x-\dfrac{\pi }{4}\right) \cdot 3=-3\sin \left(3x-\dfrac{\pi }{4}\right)\\ \end{eqnarray*}
Find y^\prime if:
(a) y=e^{x^{2}-4} \quad (b) y=\sin (4e^{x})
Solution (a) For y=e^{x^{2}-4}, we let u=x^{2}-4. Then y=e^{u} and \begin{eqnarray*} && \dfrac{dy}{du}=\dfrac{d}{du}e^{u}=e^{u}\underset{\underset{\color{#0066A7}{{{\hbox{\(u=x^{2}-4\)}}}}} {\color{#0066A7}{\uparrow}}}{=}e^{x^{2}-4} \quad\hbox{and}\quad \dfrac{du}{dx}=\dfrac{d}{dx}( x^{2}-4) =2x\\ \end{eqnarray*}
200
Using the Chain Rule, we get y^\prime =\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}=e^{x^{2}-4}\cdot 2x=2xe^{x^{2}-4}
(b) For y=\sin (4e^{x}) , we let u=4e^{x}. Then y=\sin u and \begin{eqnarray*} && \dfrac{dy}{du}=\dfrac{d}{du}\sin u=\cos u \underset{\underset{\color{#0066A7}{{{\hbox{\(u=4e^{x}\)}}}}}{\color{#0066A7}{\uparrow}}}{=}\cos (4e^{x})\quad\hbox{and}\quad\dfrac{du}{dx}=\dfrac{d}{dx}(4e^{x})=4e^{x}\\ \end{eqnarray*}
Using the Chain Rule, we get y^\prime =\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}=\cos (4e^{x}) \cdot 4e^{x}=4e^{x}\cos (4e^{x})
For composite functions y=f(u(x)), where f is an exponential or trigonometric function, the Chain Rule simplifies finding y^\prime. For example,
Find an equation of the tangent line to the graph of y=5e^{4x} at the point ( 0,5) .
Solution The slope of the tangent line to the graph of y=f( x) at the point ( 0,5) is f^\prime ( 0) . \begin{eqnarray*} f^\prime (x) &=& \dfrac{d}{dx}( 5e^{4x}) \underset{\underset{\color{#0066A7}{\hbox{Mulitple Rule}}}{\underset{\color{#0066A7}{\hbox{Constant}}}{\color{#0066A7}{{\uparrow}}}}}{=} 5\dfrac{d}{dx}e^{4x} \underset{\underset{\underset{\color{#0066A7}{{{\hbox{\(\tfrac{d}{dx}{e}^{u}{= e}^{u} \tfrac{du}{dx}\)}}}}}{\color{#0066A7}{{{\hbox{\(u=4x;\)}}}}}}{\color{#0066A7} {{\uparrow}}}}{=} 5e^{4x}\,{\cdot}\,\dfrac{d}{dx}(4x)=5e^{4x}\,{\cdot}\,4=20e^{4x}\\ \end{eqnarray*} m_{\tan }= f^\prime ( 0) =20e^{0}=20. Using the point slope form of a line, we have \begin{eqnarray*} y-5 &=&20( x-0)\qquad {\color{#0066A7}{y-y_{0} = m_{\tan }( { x-x}_{{ 0}})}}\\ y &=&20x+5 \end{eqnarray*}
The graph of y=5e^{4x} and the line y=20x+5 are shown in Figure 1.
201
All carbon on Earth contains some carbon-14, which is radioactive. When a living organism dies, the carbon-14 begins to decay at a fixed rate. The formula P( t) =100e^{-0.000121t} gives the percentage of carbon-14 present at time t years. Notice that when t=0, the percentage of carbon-14 present is 100%. When the preserved bodies of 15-year-old La Doncella and her two children were found in Peru in 2005, 93.5% of the carbon-14 remained in their bodies, indicating that the three had died about 550 years earlier.
Solution (a) The rate of change of P is given by its derivative \begin{eqnarray*} && P^\prime ( t) =\dfrac{d}{dt}(100e^{-0.000121t}) \underset{\underset{\color{#0066A7} { {\hbox{\( \tfrac{d}{dt}e^{u}=e^{u}\tfrac{du}{dt} \)}} }}{\color{#0066A7}{{\uparrow}}}}{=} 100(-0.000121e^{-0.000121t}) = -0.0121e^{-0.000121t}\\ \end{eqnarray*}
At t=550 years, P^\prime (550) =-0.0121e^{-0.000121(550)} \approx -0.0113
The percentage of carbon-14 present in a 550-year-old fossil is decreasing at the rate of 1.13% per year.
(b) When t=2000 years, the rate of change is P^\prime ( 2000) =-0.0121e^{-0.000121( 2000) }\approx -0.0095
The percentage of carbon-14 present in a 2000-year-old fossil is decreasing at the rate of 0.95% per year.
When we first stated the Chain Rule, we expressed it two ways: using prime notation and using Leibniz notation. In each example so far, we have used Leibniz notation. But when solving numerical problems, using prime notation is often easier. In this form, the Chain Rule states that \bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{ (f\circ g)^\prime (x) =f^\prime (g(x) ) g^\prime ( x)}}
Suppose h=f\circ g. Find h^\prime (1) given that: f(1) =2 \quad f^\prime (1) =1 \quad f^\prime (2) =-4 \quad g(1) =2 \quad g^\prime (1) =-3\quad g^\prime (2) =5
Solution Based on the Chain Rule using prime notation, we have h^\prime ( x_{0}) =( f\circ g)^\prime ( x_{0}) =f^\prime (g( x_{0})) g^\prime ( x_{0})
When x_{0}=1, \begin{eqnarray*} && h^\prime (1) =f^\prime (g(1)) g^\prime(1) \underset{\underset{\color{#0066A7}{{g(1)=2; g^\prime (1)=-3}}}{\color{#0066A7}{{\uparrow}}}}{=} f^\prime (2) \cdot ( -3) \underset{\underset{\color{#0066A7}{{f^\prime (2) =-4}}} {\color{#0066A7}{{\uparrow}}}}{=}(-4) ( -3) =12 \\ \end{eqnarray*}
Printed Page 202
202
The Chain Rule allows us to establish a formula for differentiating an exponential function y=a^{x} for any base a>0 and a≠ 1. We start with the following property of logarithms: a^{x}=e^{\ln a^{x}}=e^{x\ln a} \qquad a > 0, a≠ 1 Then \begin{eqnarray*} && \dfrac{d}{dx}a^{x}=\dfrac{d}{dx}e^{x\ln a} \underset{\underset{\color{#0066A7}{\tfrac{d}{dx}e^{u} = e^{u}\tfrac{du}{dx}}}{{\color{#0066A7}{\uparrow}}}}{=} e^{x\ln a}\dfrac{d}{dx}\!\left( x\ln a\right) =e^{x\ln a}\ln a=a^{x}\ln a\\ \end{eqnarray*}
Properties of logarithms are discussed in Appendix A.1, pp. A-10 to A-11.
The derivative of an exponential function y=a^{x}, where a>0 and a≠ 1, is \bbox[5px, border:1px solid black, #F9F7ED]{ y^\prime = \dfrac{d}{dx}a^{x}=a^{x}\ln a}
Find the derivative of each function:
(a) f( x) =2^{x} \quad (b) F( x) =3^{-x} \quad (c) g( x) =\left(\dfrac{1}{2}\right) ^{x^{2}+1}
Solution (a) f is an exponential function with base a=2. \begin{eqnarray*} f^\prime (x) =\dfrac{d}{dx}2^{x}= 2^{x}\ln 2\qquad {\color{#0066A7}{\tfrac{d}{dx}a^{x}=a^{x}\ln a}} \end{eqnarray*}
(b) Since F(x)=3^{-x}=\dfrac{1}{3^x}=\left( \dfrac{1}{3}\right) ^{x}, F is an exponential function with base \dfrac{1}{3}. So, \begin{eqnarray*} && F^\prime (x) =\dfrac{d}{dx}\left( \dfrac{1}{3}\right) ^{x} \underset{\underset{{\color{#0066A7}{\tfrac{d}{dx}a^{x}=a^{x}\ln a}}}{\color{#0066A7}{{\uparrow}}}}{=} \left( \dfrac{1}{3}\right) ^{x}\ln \dfrac{1}{3}=\left( \dfrac{1}{3}\right) ^{x}\ln 3^{-1}=-\left( \dfrac{1}{3}\right) ^{x}\ln 3 =-\dfrac{1}{3^{x}}\ln 3 \\ \end{eqnarray*}
(c) y=g( x) =\left( \dfrac{1}{2}\right) ^{x^{2}+1} is a composite function. If u=x^{2}+1, then y=\left( \dfrac{1}{2}\right) ^{u} and \begin{eqnarray*} && \dfrac{dy}{du} \underset{\underset{{\color{#0066A7}{\tfrac{d}{du}a^{u}=a^{u}\ln a}}}{{\color{#0066A7}{\uparrow}}}}{=} \left(\dfrac{1}{2}\right)^{u}\ln \left( \dfrac{1}{2}\right) \underset{\underset{{\color{#0066A7}{\ln \left( \tfrac{1}{2}\right) =-\ln 2}}}{{\color{#0066A7}{\uparrow}}}}{=} -\left( \dfrac{1}{2}\right) ^{u}\ln 2 \underset{\underset{{\color{#0066A7}{u=x^{2}+1}}}{{\color{#0066A7}{\uparrow}}}}{=} -\left( \dfrac{1}{2}\right) ^{x^{2}+1}\ln 2 \quad \hbox{and}\quad \dfrac{du}{dx}=2x\\ \end{eqnarray*} So, by the Chain Rule, \begin{eqnarray*} g^\prime (x) &=&\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}=\left[ -\!\left( \dfrac{1}{2}\right) ^{x^{2}+1}\ln 2\right] (2x) =(-\ln 2)\,{x}\,\!\left( \dfrac{1}{2}\right) ^{x^{2}} \end{eqnarray*}
Printed Page 202
We use the Chain Rule to establish other derivative formulas, such as a formula for the derivative of a function raised to a power.
203
If g is a differentiable function and n is an integer, then \bbox[5px, border:1px solid black, #F9F7ED]{ \dfrac{d}{dx}[g( x) ] ^{n}=n[g(x)] ^{n-1}g^\prime (x)}
If y=[g( x) ] ^{n}, let y=u^{n} and u=g( x) . Then \dfrac{dy}{du}=nu^{n-1}=n[g( x) ] ^{n-1}\qquad \hbox{and} \qquad \dfrac{du}{dx}=g^\prime (x)
By the Chain Rule, y^\prime =\dfrac{d}{dx}[g( x) ] ^{n}=\dfrac{dy}{du} \cdot \dfrac{du}{dx}=n[g( x) ] ^{n-1}g^\prime ( x)
Often other derivative rules are used along with the Power Rule for Functions.
Find the derivative of:
(a) f( x) =e^{x}(x^{2}+1) ^{3} \quad (b) g( x) =\left( \dfrac{3x+2}{4x^{2}-5}\right)^{5}
Solution (a) The function f is the product of e^{x} and (x^{2}+1) ^{3}, so we first use the Product Rule. \begin{eqnarray*} && f^\prime (x) \underset{\underset{\color{#0066A7}{\hbox{Product Rule}}}{{\color{#0066A7}{\uparrow}}}}{=} e^{x}\left[ \dfrac{d}{dx}(x^{2}+1) ^{3}\right] +\left[ \dfrac{d}{dx}e^{x}\right] (x^{2}+1) ^{3}\\ \end{eqnarray*}
204
To complete the solution, we use the Power Rule for Functions to find \dfrac{d}{dx}(x^{2}+1) ^{3}. \begin{eqnarray*} f^\prime ( x) &=& e^{x}\left[ 3(x^{2}+1) ^{2}\cdot \dfrac{d}{dx}(x^{2}+1) \right] +e^{x}(x^{2}+1) ^{3}\qquad {{\color{#0066A7}{\hbox{Power Rule for Functions}}}} \\ &=& e^{x}[3(x^{2}+1) ^{2}\cdot 2x] + e^{x}(x^{2}+1) ^{3} = e^{x}[6x(x^{2}+1) ^{2}+(x^{2}+1) ^{3}]\\ &=& e^{x}(x^{2}+1) ^{2}[6x+x^{2}+1] =e^{x}(x^{2}+1) ^{2}( x^{2}+6x+1) \end{eqnarray*}
(b) g is a function raised to a power, so we begin with the Power Rule for Functions. \begin{eqnarray*} g^\prime ( x) &=&\dfrac{d}{dx}\left( \dfrac{3x+2}{4x^{2}-5}\right) ^{5} = 5\left( \dfrac{3x+2}{4x^{2}-5}\right) ^{4}\left[ \dfrac{d}{dx}\left( \dfrac{3x+2}{4x^{2}-5}\right) \right] \,\, {{\color{#0066A7}{\hbox{Power Rule for Functions}}}}\\ &=&5\left( \dfrac{3x+2}{4x^{2}-5}\right) ^{4}\left[ \dfrac{( 3) ( 4x^{2}-5) -(3x+2) (8x) }{(4x^{2}-5) ^{2}}\right]\quad \qquad {{\color{#0066A7}{\hbox{Quotient Rule}}}}\\ &=&\dfrac{5(3x+2) ^{4}[ (12x^{2}-15) -( 24x^{2}+16x) ] }{(4x^{2}-5) ^{6}}\\ &=&\dfrac{5(3x+2) ^{4}[ -12x^{2}-16x-15] }{( 4x^{2}-5) ^{6}} \end{eqnarray*}
Printed Page 204
The Chain Rule can be extended to multiple composite functions. For example, if the functions y=f(u)\qquad u=g(v)\qquad v=h(x) are each differentiable functions of u, v, and x, respectively, then the composite function y=( f\circ g\circ h) ( x) =f( g( h( x) ) ) is a differentiable function of x and \bbox[5px, border:1px solid black, #F9F7ED]{ {y^\prime = \dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dv}\cdot \dfrac{dv}{dx}}} where u=g(v) =g(h(x)) and v=h(x). This “chain” of factors is the basis for the name Chain Rule.
Find y^\prime if:
(a) y=5\cos ^{2}(3x+2) \quad (b) y=\sin ^{3}\left( \dfrac{\pi }{2}x\right)
Solution (a) For y=5\cos ^{2}(3x+2) , we use the Chain Rule with y=5u^{2}, u=\cos v, and v=3x+2. Then y=5u^{2}=5\cos ^{2}v=5\cos ^{2}(3x+2) and \begin{eqnarray*} \dfrac{dy}{du} &=&\dfrac{d}{du}(5u^{2}) =10u \underset{\underset{\color{#0066A7}{{\hbox{\(v=3x+2\)}}}}{\underset{\color{#0066A7}{{\hbox{\(u=cos v\)}}}}{{\color{#0066A7}{\uparrow}}}}} {=} 10\cos (3x+2) \\ \dfrac{du}{dv} &=&\dfrac{d}{dv}\cos v=-\sin v \underset{\underset{{\color{#0066A7}{{\hbox{\(v=3x+2\)}}}}}{{\color{#0066A7}{\uparrow}}}}{=} -\sin (3x+2) \\ \dfrac{dv}{dx} &=&\dfrac{d}{dx}(3x+2) =3 \end{eqnarray*}
205
Then \begin{eqnarray*} y^\prime &=& \dfrac{dy}{dx} \underset{\underset{\color{#0066A7}{\scriptsize\hbox{Chain Rule}}}{{\color{#0066A7}{\uparrow}}}}{=} \dfrac{dy}{du}\cdot \dfrac{du}{dv}\cdot \dfrac{dv}{dx}=[10\cos (3x+2)] [ -\!\sin (3x+2)] [ 3]\\ &=& -30\cos (3x+2) \sin (3x+2) \end{eqnarray*}
(b) For y=\sin ^{3}\left( \dfrac{\pi }{2}x\right) , we use the Chain Rule with y=u^{3}, u=\sin v\,, and v=\dfrac{\pi }{2}x. Then y=u^{3}=\left( \sin v\right) ^{3}=\left[ \sin \left( \dfrac{\pi }{2}x\right) \right] ^{3}=\sin ^{3}\left( \dfrac{\pi }{2}x\right) , and \begin{eqnarray*} \dfrac{dy}{du} &=&\dfrac{d}{du}u^{3}=3u^{2} \underset{\underset{\underset{\color{#0066A7}{{\hbox{\(v=\dfrac{\pi}{2}x\)}}}}{\color{#0066A7}{{\hbox{\(u=\sin v\)}}}}}{{\color{#0066A7}{\uparrow}}}}{=} 3\left[ \sin \left( \dfrac{\pi }{2}x\right) \right] ^{2} = 3 \sin^{2}\left(\frac{\pi}{2}x\right)\\ \dfrac{du}{dv} &=&\dfrac{d}{dv}\sin v=\cos v \underset{\underset{\color{#0066A7}{{\hbox{\(v=\dfrac{\pi}{2}x\)}}}}{{\color{#0066A7}{\uparrow}}}}{=}\cos \left( \dfrac{\pi}{2}x\right) \\ \dfrac{dv}{dx} &=&\dfrac{d}{dx}\left( \dfrac{\pi }{2}x\right) = \dfrac{\pi }{2} \end{eqnarray*}
Then \begin{eqnarray*} y^\prime &=& \dfrac{dy}{dx} \underset{\underset{\color{#0066A7}{\scriptsize\hbox{Chain Rule}}}{{\color{#0066A7}{\uparrow}}}}{=} \dfrac{dy}{du}\cdot \dfrac{du}{dv}\cdot \dfrac{dv}{dx}=3\sin ^{2}\left( \dfrac{\pi }{2}x\right) \cdot \cos \left( \dfrac{\pi }{2}x\right) \cdot \left( \dfrac{\pi }{2}\right) \\ &=&\dfrac{3\pi }{2}\sin ^{2}\!\left( \dfrac{\pi }{2}x\right) \cos \left( \dfrac{\pi }{2}x\right) \\ \end{eqnarray*}